Improved estimation of target velocity using multiple model estimation and a dynamic Bayesian network for a robotic tracker of ocean animals

被引:0
|
作者
Plotnik, Aaron [1 ]
Rock, Stephen [1 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
来源
ROBOTICS RESEARCH | 2007年 / 28卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A vision-based automatic tracking system for ocean animals in the midwater has been demonstrated in Monterey Bay, CA. Currently, the input to this system is a measurement of relative position of a target with respect to the tracking vehicle, from which relative velocities are estimated by differentiation. In this paper, the estimation of target velocities is extended to use knowledge of the modal nature of the motions of the tracked target and to incorporate the discrete output of an online classifier that categorizes the visually observable body motions of the animal. First, by using a multiple model estimator, a more expressive hybrid dynamical model is imposed on the target. Then, the estimator is augmented to input the discrete classification from the secondary vision algorithm by recasting the process and sensor models as a dynamic Bayesian network (DBN). By leveraging the information in the body motion classifications, the estimator is able to detect mode changes before the resulting changes in velocity are apparent and a significant improvement in velocity estimation is realized. This, in turn, generates the potential for improved closed-loop tracking performance.
引用
收藏
页码:402 / +
页数:3
相关论文
共 50 条
  • [1] Hybrid Estimation Using Perceptional Information: Robotic Tracking of Deep Ocean Animals
    Plotnik, Aaron
    Rock, Stephen
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2011, 36 (02) : 298 - 315
  • [2] Target Tracking System Using Multiple Cameras and Bayesian Estimation
    Dondo, Diego Gonzalez
    Redolfi, Javier
    Griffa, Martin
    Steiner, Guillermo
    Canali, Luis
    2015 XVI WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2015,
  • [3] Target Tracking System Using Multiple Cameras and Bayesian Estimation
    Dondo, D. G.
    Redolfi, J. A.
    Griffa, M.
    Steiner, G. M.
    Canali, L. R.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (06) : 2713 - 2718
  • [4] Bayesian target location and velocity estimation for multiple-input multiple-output radar
    Jiang, M.
    Niu, R.
    Blum, R. S.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (06): : 666 - 670
  • [5] Unifying Bayesian Networks and IMM Filtering for Improved Multiple Model Estimation
    Schubert, Robin
    Wanielik, Gerd
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 810 - 817
  • [6] Instantaneous Target Velocity Estimation Using a Network of a Radar and Repeater Elements
    Meinecke, Benedikt
    Steiner, Maximilian
    Schlichenmaier, Johannes
    Waldschmidt, Christian
    2019 16TH EUROPEAN RADAR CONFERENCE (EURAD), 2019, : 241 - 244
  • [7] Availability estimation of optical network links using a Bayesian model
    Christou, Filippos
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2024, 16 (05) : B1 - B15
  • [8] Visual focus of attention estimation based on improved hybrid incremental dynamic Bayesian network
    罗元
    陈雪峰
    张毅
    陈旭
    刘星遥
    范霆铠
    OptoelectronicsLetters, 2020, 16 (01) : 45 - 51
  • [9] Visual focus of attention estimation based on improved hybrid incremental dynamic Bayesian network
    Yuan Luo
    Xue-feng Chen
    Yi Zhang
    Xu Chen
    Xing-yao Liu
    Ting-kai Fan
    Optoelectronics Letters, 2020, 16 : 45 - 51
  • [10] Visual focus of attention estimation based on improved hybrid incremental dynamic Bayesian network
    Luo, Yuan
    Chen, Xue-feng
    Zhang, Yi
    Chen, Xu
    Liu, Xing-yao
    Fan, Ting-kai
    OPTOELECTRONICS LETTERS, 2020, 16 (01) : 45 - 51