On the critical equilibrium of the spiral spring pendulum

被引:0
|
作者
Coullet, P. [1 ,2 ]
Gilli, J. -M. [2 ,3 ]
Rousseaux, G. [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, UMR UNS 6621, Lab JA Dieudonne, F-06108 Nice 02, France
[2] Univ Nice Sophia Antipolis, Inst Robert Hooke Culture Sci, F-06108 Nice 02, France
[3] Univ Nice Sophia Antipolis, CNRS, UMR UNS 6618, Inst Nonlineaire Nice, F-06560 Valbonne, France
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 466卷 / 2114期
关键词
dynamical system; criticality; nonlinear physics; 2ND-ORDER PHASE-TRANSITIONS; GRAVITY; TORSION;
D O I
10.1098/rspa.2009.0393
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Physical systems such as an inverted pendulum driven by a spiral spring, an unbalanced Euler elastica with a travelling mass, a heavy body with a parabolic section and an Ising ferromagnet are very different. However, they all behave in the same manner close to the critical regime for which nonlinearities are prominent. We demonstrate experimentally, for the first time, an old prediction by Joseph Larmor, which states that a nonlinear oscillator close to its supercritical bifurcation oscillates with a period inversely proportional to its angular amplitude. We perform our experiments with a Holweck-Lejay-like pendulum which was used to measure the gravity field during the twentieth century.
引用
收藏
页码:407 / 421
页数:15
相关论文
共 50 条
  • [1] THE LION, THE SPRING AND THE PENDULUM
    WINGERSON, L
    NEW SCIENTIST, 1983, 97 (1342) : 236 - 239
  • [2] SPRING SUSPENSIONS FOR A PENDULUM
    FEDCHENKO, FM
    FLEER, AG
    MEASUREMENT TECHNIQUES-USSR, 1966, (08): : 1012 - +
  • [3] SPIRAL PENDULUM - LEVENSON,WB
    SEARS, WP
    EDUCATION, 1969, 89 (03): : 288 - 288
  • [4] Behavior of a rubber spring pendulum
    Bhattacharyya, R
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2000, 67 (02): : 332 - 337
  • [5] STABILITY OF A SPRING-PENDULUM
    NARKIS, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1977, 28 (02): : 343 - 348
  • [6] Stability of equilibrium for an inverted two-link mathematical pendulum with critical tracking forces
    I. G. Boruk
    L. G. Lobas
    International Applied Mechanics, 1999, 35 : 962 - 967
  • [7] Stability of equilibrium for an inverted two-link mathematical pendulum with critical tracking forces
    Boruk, IG
    Lobas, LG
    INTERNATIONAL APPLIED MECHANICS, 1999, 35 (09) : 962 - 967
  • [8] Solving the overall critical load capacity of sway frame based on the spring-pendulum model
    Xiao, Juncai
    Shuang, Chao
    Pan, Wen
    Su, Hexian
    Sun, Guangyu
    Han, Chunxiu
    STRUCTURES, 2024, 61
  • [9] THE EQUILIBRIUM STATE OF A FLEXIBLE PENDULUM
    汪懋骅
    Applied Mathematics and Mechanics(English Edition), 1985, (12) : 1217 - 1218
  • [10] Motion analysis of magnetic spring pendulum
    Yong Meng
    Nonlinear Dynamics, 2023, 111 : 6111 - 6128