Artificial neural network modeling for prediction of binary surface tension containing ionic liquid

被引:17
|
作者
Lashkarbolooki, Mostafa [1 ]
机构
[1] Babol Noshirvani Univ Technol, Sch Chem Engn, Babol Sar 4714871167, Iran
关键词
Artificial neural network; binary mixture; ionic liquids; surface tension; PRESSURE PHASE-BEHAVIOR; SUPPORT VECTOR MACHINES; PHYSICOCHEMICAL PROPERTIES; PHYSICAL-PROPERTIES; EXCESS PROPERTIES; HECK REACTION; PLUS ETHANOL; MIXTURES; DENSITY; WATER;
D O I
10.1080/01496395.2017.1288137
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this study, a feed-forward multilayer perceptron neural network is applied to predict the surface tension of 32 binary ionic liquids (ILs)/non-ILs systems using melting point (Tm), molecular weight (Mw) and mole fraction of ILs as well as Tm and Mw of non-IL components. The data are divided into two different subsets, namely training and testing subsets, to obtain the optimum parameters of the used network and to evaluate the correlative capability of the trained network. The results of the test stage show excellent capability of the proposed network to predict/correlate the binary surface tension of ILs/non-ILs systems (AARD%: 0.93, MSE: 6.67 x 10(-7) and R-2: 0.9950).
引用
收藏
页码:1454 / 1467
页数:14
相关论文
共 50 条
  • [1] Surface Tension Prediction of Ionic Liquid Binary Solutions
    Lemraski, Ensieh Ghasemian
    Pouyanfar, Zohre
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2014, 59 (12): : 3982 - 3987
  • [2] Modeling surface tension of ten binary cryogenic mixtures with a thermodynamic method and artificial neural network
    Pierantozzi, Mariano
    Rahmani, Zahra
    Khosharay, Shahin
    CRYOGENICS, 2025, 145
  • [3] Prediction surface tension of ionic liquid-water mixtures using a hybrid group contribution and artificial neural network method
    Fu, Yingxue
    Chen, Yuqiu
    Zhang, Chuntao
    Lei, Yang
    Liu, Xinyan
    FLUID PHASE EQUILIBRIA, 2022, 563
  • [4] Artificial neural network for the corrrelation and prediction of surface tension of refrigerants
    Mulero, Angel
    Cachadina, Isidro
    Valderrama, Jose O.
    FLUID PHASE EQUILIBRIA, 2017, 451 : 60 - 67
  • [5] Artificial Neural Network for Compositional Ionic Liquid Viscosity Prediction
    Yiqing Miao
    David W. Rooney
    Quan Gan
    International Journal of Computational Intelligence Systems, 2012, 5 : 460 - 471
  • [6] Artificial Neural Network for Compositional Ionic Liquid Viscosity Prediction
    Miao, Yiqing
    Rooney, David W.
    Gan, Quan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2012, 5 (03) : 460 - 471
  • [7] Prediction of surface tension of the binary mixtures containing ionic liquid using heuristic approaches; an input parameters investigation
    Shojaeian, Abolfazl
    Asadizadeh, Mostafa
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 298 (298)
  • [8] Prediction of surface tension of binary refrigerant mixtures using artificial neural networks
    Nabipour, Milad
    FLUID PHASE EQUILIBRIA, 2018, 456 : 151 - 160
  • [9] Prediction of vapor-liquid equilibrium for binary systems containing HFEs by using artificial neural network
    Urata, S
    Takada, A
    Murata, J
    Hiaki, T
    Sekiya, A
    FLUID PHASE EQUILIBRIA, 2002, 199 (1-2) : 63 - 78
  • [10] Prediction of Surface Tension of Pure Hydrocarbons by An Artificial Neural Network System
    Pazuki, G. R.
    Nikookar, M.
    Sahranavard, L.
    PETROLEUM SCIENCE AND TECHNOLOGY, 2011, 29 (22) : 2384 - 2396