Nonlinear topological edge states in a non-Hermitian array of optical waveguides embedded in an atomic gas

被引:16
|
作者
Hang, Chao [1 ,2 ]
Zezyulin, Dmitry A. [3 ]
Huang, Guoxiang [1 ,2 ]
Konotop, Vladimir V. [4 ,5 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] NYU Shanghai, NYU ECNU Inst Phys, Shanghai 200062, Peoples R China
[3] ITMO Univ, St Petersburg 197101, Russia
[4] Univ Lisbon, Fac Ciencias, Dept Fis, Edificio C8, P-1749016 Lisbon, Portugal
[5] Univ Lisbon, Fac Ciencias, Ctr Fis Teor & Computac, Edificio C8, P-1749016 Lisbon, Portugal
基金
中国国家自然科学基金;
关键词
SOLITONS; INVERSION; SYMMETRY; PHASE;
D O I
10.1103/PhysRevA.103.L040202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a scheme comprising an array of anisotropic optical waveguides, embedded in a gas of cold atoms, which can be tuned from a Hermitian to an odd-PT-symmetric configuration through themanipulation of control and assistant laser fields. We show that the system can be controlled by tuning intra- and intercell coupling coefficients, enabling the creation of topologically distinct phases and linear topological edge states. The waveguide array, characterized by a quadrimer primitive cell, allows for implementing transitions between Hermitian and odd-PT-symmetric configurations, broken and unbroken PT-symmetric phases, topologically trivial and nontrivial phases, as well as transitions between linear and nonlinear regimes. The introduced scheme generalizes the Rice-Mele Hamiltonian for a nonlinear non-Hermitian quadrimer array featuring odd-PT symmetry and makes accessible unique phenomena and functionalities that emerge from the interplay of non-Hermiticity, topology, and nonlinearity. We also show that in the presence of nonlinearity the system sustains nonlinear topological edge states bifurcating from the linear topological edge states and the modes without a linear limit. Each nonlinear mode represents a doublet of odd-PT-conjugate states. In the broken PT phase, the nonlinear edge states may be effectively stabilized when an additional absorption is introduced into the system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Topological phases and edge states in a non-Hermitian trimerized optical lattice
    Jin, L.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [2] Edge States and Topological Invariants of Non-Hermitian Systems
    Yao, Shunyu
    Wang, Zhong
    PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [3] Edge states in a non-Hermitian topological crystalline insulator
    Xu, Qiu-Yue
    Liu, Feng
    Chen, Chui-Zhen
    Xu, Dong-Hui
    PHYSICAL REVIEW B, 2022, 105 (07)
  • [4] Versatile braiding of non-Hermitian topological edge states
    Zhu, Bofeng
    Wang, Qiang
    Wang, You
    Wang, Qi Jie
    Chong, Y. D.
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [5] Edge states and topological phases in non-Hermitian systems
    Esaki, Kenta
    Sato, Masatoshi
    Hasebe, Kazuki
    Kohmoto, Mahito
    PHYSICAL REVIEW B, 2011, 84 (20):
  • [6] Sensitivity of topological edge states in a non-Hermitian dimer chain
    ZHIWEI GUO
    TENGZHOU ZHANG
    JUAN SONG
    HAITAO JIANG
    HONG CHEN
    Photonics Research , 2021, (04) : 574 - 582
  • [7] Anomalous Topological Edge States in Non-Hermitian Piezophononic Media
    Gao, Penglin
    Willatzen, Morten
    Christensen, Johan
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [8] Sensitivity of topological edge states in a non-Hermitian dimer chain
    Guo, Zhiwei
    Zhang, Tengzhou
    Song, Juan
    Jiang, Haitao
    Chen, Hong
    PHOTONICS RESEARCH, 2021, 9 (04) : 574 - 582
  • [9] Nonlinear tuning of PT symmetry and non-Hermitian topological states
    Xia, Shiqi
    Kaltsas, Dimitrios
    Song, Daohong
    Komis, Ioannis
    Xu, Jingjun
    Szameit, Alexander
    Buljan, Hrvoje
    Makris, Konstantinos G.
    Chen, Zhigang
    SCIENCE, 2021, 372 (6537) : 72 - +
  • [10] Phase transition of non-Hermitian topological edge states in microwave regime
    Yu, Ye
    Song, Wange
    Chen, Chen
    Chen, Tao
    Ye, Hongmei
    Shen, Xiaopeng
    Cheng, Qngqing
    Li, Tao
    APPLIED PHYSICS LETTERS, 2020, 116 (21)