To identify p53-target genes we have been using a cDNA-microarray system to assess gene expression in a p53-mutated glioblastoma cell line (U373MG) after adenovirus-mediated transfer of wild-type p53 into the p53-deficient cells. In the work reported here, expression of hCDC4b, which encodes one of the four sub-units of the SCIF (ubiquitin ligase) complex responsible for degradation of cyclin E, was dramatically up-regulated by infection with AD-p53. An electrophoretic mobility-shift assay and a chromatin immunoprecipitation assay indicated that a potential p53-binding site (p53BS) present in exon 1b of the hCDC4 gene was able to bind to p53, and a reporter assay confirmed that this p53BS had p53-dependent transcriptional activity. Expression of endogenous hCDC4b, but not the alternative transcript of this gene, hCDC4a, was induced in a p53-dependent manner in response to genotoxic stresses caused by UV irradiation and adriamycin treatment, suggesting that each transcript has a different functional role. These results suggest that hCDC4b is a previously unrecognized transcriptional target of the p53 protein, and that by negatively regulating cyclin E through induction of hCDC4b, p53 might stop cell-cycle progression at G0-G1. This would represent a novel mechanism for p53-dependent control of the cell cycle, in addition to the well-known p21(WAF1) machinery.