On the resolvent and spectral functions of a second order differential operator with a regular singularity

被引:23
|
作者
Falomir, H
Muschietti, MA
Pisani, PAG
机构
[1] Natl Univ La Plata, IFLP, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina
[2] Natl Univ La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Argentina
关键词
D O I
10.1063/1.1809257
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the resolvent of a second order differential operator with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents unusual powers of lambda which depend on the singularity. The consequences for the pole structure of the zeta function, and for the small-t asymptotic expansion of the heat kernel, are also discussed. (C) 2004 American Institute of Physics.
引用
收藏
页码:4560 / 4577
页数:18
相关论文
共 50 条