共 50 条
Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake
被引:65
|作者:
Stolarczyk, Emilie
[1
,2
,3
,4
]
Guissard, Christophe
[5
]
Michau, Aurelien
[1
,2
,3
,4
]
Even, Patrick C.
[6
]
Grosfeld, Alexandra
[1
,2
,3
,4
]
Serradas, Patricia
[1
,2
,3
,4
]
Lorsignol, Anne
[5
]
Penicaud, Luc
[5
]
Brot-Laroche, Edith
[1
,2
,3
,4
]
Leturque, Armelle
[1
,2
,3
,4
]
Le Gall, Maude
[1
,2
,3
,4
]
机构:
[1] Ctr Rech Cordeliers, Unite Mixte Rech UMR S872, F-75006 Paris, France
[2] Inst Natl Sante & Rech Med, U872, Paris, France
[3] Univ Paris 06, UMR S872, Paris, France
[4] Univ Paris 05, UMR S872, Paris, France
[5] Univ Toulouse 3, CNRS, UMR 5241, F-31062 Toulouse, France
[6] Ctr Rech Nutr Humaine Ile France, Inst Natl Rech Agron, AgroParisTech, UMR Nutr Physiol & Ingest Behav 914, Paris, France
来源:
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM
|
2010年
/
298卷
/
05期
关键词:
glucose transporter 2;
sugar sensing;
SLC2A2;
SWEET TASTE RECEPTORS;
ADULT-RAT BRAIN;
ARCUATE NUCLEUS;
GLUCOSE-TRANSPORTER-2;
GLUT2;
INSULIN-SECRETION;
TRANSPORTER GLUT2;
GENE-EXPRESSION;
HEPATIC CELLS;
BODY-WEIGHT;
NEURONS;
D O I:
10.1152/ajpendo.00737.2009
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Stolarczyk E, Guissard C, Michau A, Even PC, Grosfeld A, Serradas P, Lorsignol A, Penicaud L, Brot-Laroche E, Leturque A, Le Gall M. Detection of extracellular glucose by GLUT2 contributes to hypothalamic control of food intake. Am J Physiol Endocrinol Metab 298: E1078-E1087, 2010. First published February 23, 2010; doi: 10.1152/ajpendo.00737.2009.-The sugar transporter GLUT2, present in several tissues of the gut-brain axis, has been reported to be involved in the control of food intake. GLUT2 is a sugar transporter sustaining energy production in the cell, but it can also function as a receptor for extracellular glucose. A glucose-signaling pathway is indeed triggered, independently of glucose metabolism, through its large cytoplasmic loop domain. However, the contribution of the receptor function over the transporter function of GLUT2 in the control of food intake remains to be determined. Thus, we generated transgenic mice that express a GLUT2-loop domain, blocking the detection of glucose but leaving GLUT2-dependent glucose transport unaffected. Inhibiting GLUT2-mediated glucose detection augmented daily food intake by a mechanism that increased the meal size but not the number of meals. Peripheral hormones (ghrelin, insulin, leptin) were unaffected, leading to a focus on central aspects of feeding behavior. We found defects in c-Fos activation by glucose in the arcuate nucleus and changes in the amounts of TRH and orexin neuropeptide mRNA, which are relevant to poorly controlled meal size. Our data provide evidence that glucose detection by GLUT2 contributes to the control of food intake by the hypothalamus. The sugar transporter receptor, i.e., "transceptor" GLUT2, may constitute a drug target to treat eating disorders and associated metabolic diseases, particularly by modulating its receptor function without affecting vital sugar provision by its transporter function.
引用
收藏
页码:E1078 / E1087
页数:10
相关论文