Microstructural Engineering of Hydroxyapatite Membranes to Enhance Proton Conductivity

被引:40
|
作者
Liu, Dongxia [1 ,2 ]
Savino, Keith [1 ,2 ]
Yates, Matthew Z. [1 ,2 ]
机构
[1] Univ Rochester, Dept Chem Engn, Rochester, NY 14627 USA
[2] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
OXIDE FUEL-CELLS; CALCIUM PHOSPHATES; MORPHOLOGY; CRYSTALLIZATION; ELECTROLYTES; SUBSTITUTION; DEPOSITION; SEPARATION; CERAMICS; WHISKERS;
D O I
10.1002/adfm.200900318
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach to enhancing proton conductivity of ceramic is demonstrated by aligning proton conductive pathways and eliminating resistive grain boundaries. Hydroxyapatite (HAP) membranes are synthesized by multistage crystallization onto palladium. The synthesis involves three steps: electrochemical deposition of HAP seeds, secondary hydrothermal crystallization onto the seed layer to promote c-axis growth normal to the substrate, and tertiary hydrothermal crystallization to promote a-axis growth to fill the gaps between the aligned crystals. The c-axis alignment with crystal domains spanning the membrane thickness significantly enhances proton conduction since protons are primarily transported along the c-axes of HAP crystals. The novel HAP membranes display proton conductivity almost four orders of magnitude higher than traditional sintered HAP ceramics. The HAP membranes on palladium hydrogen membrane substrates hold promise for use in intermediate-temperature fuel cells, chemical sensors, and other devices. The synthesis approach presented may also be applied to other ion-conducting membrane materials to enhance transport properties.
引用
收藏
页码:3941 / 3947
页数:7
相关论文
共 50 条
  • [1] Yttrium-Doped Hydroxyapatite Membranes with High Proton Conductivity
    Wei, Xue
    Yates, Matthew Z.
    CHEMISTRY OF MATERIALS, 2012, 24 (10) : 1738 - 1743
  • [2] Chitosan membranes filled with biomimetic mineralized hydroxyapatite for enhanced proton conductivity
    Zhao, Yuning
    Jiang, Zhongyi
    Xiao, Lulu
    Xu, Tao
    Qiao, Shizhang
    Wu, Hong
    SOLID STATE IONICS, 2011, 187 (01) : 33 - 38
  • [3] Sandwich structure engineering for constructing proton exchange membranes with excellent stability and proton conductivity
    Liu, Shouyi
    Lv, Jialin
    Zhao, Chenghui
    Li, Na
    Hu, Zhaoxia
    Chen, Shouwen
    JOURNAL OF MEMBRANE SCIENCE, 2025, 717
  • [4] Proton Conductivity of SPEEK Membranes
    Shashidhara, G. M.
    Kumar, K. Naveen
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2010, 49 (08) : 796 - 806
  • [5] INFLUENCE OF FLUORINE SUBSTITUTION ON THE PROTON CONDUCTIVITY OF HYDROXYAPATITE
    MAITI, GC
    FREUND, F
    JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1981, (04): : 949 - 955
  • [6] Ionic conductivity of proton exchange membranes
    Beattie, PD
    Orfino, FP
    Basura, VI
    Zychowska, K
    Ding, JF
    Chuy, C
    Schmeisser, J
    Holdcroft, S
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 503 (1-2): : 45 - 56
  • [7] Acrylic Copolymer Membranes with Proton Conductivity
    Smirnova, O. A.
    Mikhailova, A. M.
    Yashin, A. G.
    Chernova, M. A.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2009, 45 (12) : 1393 - 1396
  • [8] Acrylic copolymer membranes with proton conductivity
    O. A. Smirnova
    A. M. Mikhailova
    A. G. Yashin
    M. A. Chernova
    Russian Journal of Electrochemistry, 2009, 45 : 1393 - 1396
  • [9] Modelling Proton Conductivity in Perfluorosulfonate Acid Membranes
    Zhang, Bo
    Edwards, Brian J.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : F1088 - F1095
  • [10] Percolative model of proton conductivity of Nafion® membranes
    Costamagna, Paola
    Grosso, Simone
    Di Felice, Renzo
    JOURNAL OF POWER SOURCES, 2008, 178 (02) : 537 - 546