Subduction of fracture zones controls mantle melting and geochemical signature above slabs

被引:45
|
作者
Manea, Vlad C. [1 ]
Leeman, William P. [2 ]
Gerya, Taras [3 ,4 ]
Manea, Marina [1 ]
Zhu, Guizhi [3 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Geociencias, Computat Geodynam Lab, Juriquilla 76230, Queretaro, Mexico
[2] Rice Univ, Dept Earth Sci, Santa Fe, NM 87501 USA
[3] ETH, Swiss Fed Inst Technol, Dept Geosci, CH-8092 Zurich, Switzerland
[4] Moscow MV Lomonosov State Univ, Dept Geol, Moscow 119899, Russia
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
SOUTHERN VOLCANIC ZONE; TRACE-ELEMENTS; SERPENTINIZED PERIDOTITES; COMPOSITIONAL DIVERSITY; FLUID PROCESSES; ARC; BORON; CASCADES; PLATE; 36.2-DEGREES-S;
D O I
10.1038/ncomms6095
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For some volcanic arcs, the geochemistry of volcanic rocks erupting above subducted oceanic fracture zones is consistent with higher than normal fluid inputs to arc magma sources. Here we use enrichment of boron (B/Zr) in volcanic arc lavas as a proxy to evaluate relative along-strike inputs of slab-derived fluids in the Aleutian, Andean, Cascades and Trans-Mexican arcs. Significant B/Zr spikes coincide with subduction of prominent fracture zones in the relatively cool Aleutian and Andean subduction zones where fracture zone subduction locally enhances fluid introduction beneath volcanic arcs. Geodynamic models of subduction have not previously considered how fracture zones may influence the melt and fluid distribution above slabs. Using high-resolution three-dimensional coupled petrological-thermomechanical numerical simulations of subduction, we show that enhanced production of slab-derived fluids and mantle wedge melts concentrate in areas where fracture zones are subducted, resulting in significant along-arc variability in magma source compositions and processes.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] Subduction of fracture zones controls mantle melting and geochemical signature above slabs
    Vlad C. Manea
    William P. Leeman
    Taras Gerya
    Marina Manea
    Guizhi Zhu
    Nature Communications, 5
  • [2] Focused fluid transfer through the mantle above subduction zones
    Pirard, Cassian
    Hermann, Joerg
    GEOLOGY, 2015, 43 (10) : 915 - 918
  • [3] Postseismic geodetic signature of cold forearc mantle in subduction zones
    Luo, Haipeng
    Wang, Kelin
    NATURE GEOSCIENCE, 2021, 14 (02) : 104 - 109
  • [4] Postseismic geodetic signature of cold forearc mantle in subduction zones
    Haipeng Luo
    Kelin Wang
    Nature Geoscience, 2021, 14 : 104 - 109
  • [5] CONVECTION IN THE MANTLE WEDGE ABOVE THE SLAB AND TECTONIC PROCESSES IN SUBDUCTION ZONES
    IDA, Y
    JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 (NB9): : 7449 - 7456
  • [6] Experimental insights into slab-mantle interactions in subduction zones: Melting of adakite-metasomatized peridotite and the origin of the "arc signature"
    Rapp, R. P.
    Laporte, D.
    Martin, H.
    Shimizu, N.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (18) : A517 - A517
  • [7] Experimental constraints on the partial melting of sediment-metasomatized lithospheric mantle in subduction zones
    Zhang, Yanfei
    Liang, Xuran
    Wang, Chao
    Jin, Zhenmin
    Zhu, Luyun
    Gan, Wei
    AMERICAN MINERALOGIST, 2020, 105 (08) : 1191 - 1203
  • [8] Recycling and transport of continental material through the mantle wedge above subduction zones: A Caribbean example
    Rojas-Agramonte, Yamirka
    Garcia-Casco, Antonio
    Kemp, Anthony
    Kroener, Alfred
    Proenza, Joaquin A.
    Lazaro, Concepcion
    Liu, Dunyi
    EARTH AND PLANETARY SCIENCE LETTERS, 2016, 436 : 93 - 107
  • [9] Interactions between slab and sub-are mantle: Dehydration, melting and element transport in subduction zones
    Draper, DS
    Brandon, AD
    Becker, H
    CHEMICAL GEOLOGY, 1999, 160 (04) : 251 - 253
  • [10] A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes
    Gaetani, Glenn A.
    Asimow, Paul D.
    Stolper, Edward M.
    EARTH AND PLANETARY SCIENCE LETTERS, 2008, 272 (3-4) : 720 - 729