Phosphorus (P) from soil can impair the water quality of streams and lakes. We have studied the forms and pathways of its movement from soil to water using 1-ha plot lysimeters, managed as grazed grassland for 12 months in temperate South-west England. The water flow through three pathways, namely (i) surface plus interflow to 30 cm (on undrained soil), (ii) surface plus interflow to 30 cm (on a mole and tile drained soil), and (iii) mole and tile drains (to 85 cm), were gauged. Samples of water from each path were treated with various combinations of 0.45-mu m filtration and sulphuric acid-persulphate digestion and molybdate reaction, to determine the different forms of P. The total P (TP) concentration was greatest in the surface plus interflow to 30 cm paths (means 232 and 152 mu g l(-1)), whereas the mean concentration in the drainage to 85 cm was 132 mu g l(-1). This reflects the substantial enrichment of the Olsen-P extracts from the surface horizons, as extracts from the 0-2 cm layer were 10-fold more than below 45 cm. In all paths, the dissolved P comprised the greatest proportion of the P transferred, with dissolved reactive P being the dominant form. Draining land reduced the transfer of TP by about 30% (approximate to 1 kg(-1) ha(-1) year(-1)), because it can be sorbed as it flows through soil to drains. All these concentrations could cause eutrophication in surface waters.