An adaptive finite element method for second-order plate theory

被引:2
|
作者
Hansbo, Peter [1 ,2 ]
Heintz, David [1 ,2 ]
Larson, Mats G. [3 ]
机构
[1] Chalmers, Dept Math, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
[3] Umea Univ, Dept Math & Math Stat, SE-90187 Umea, Sweden
关键词
Kirchhoff plate; adaptivity; second-order theory; ELASTICITY;
D O I
10.1002/nme.2704
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a discontinuous finite element method for the Kirchhoff plate model with membrane stresses. The method is based on P(2)-approximations on simplices for the out-of-plane deformations, using C(0)-continuous approximations. We derive a posteriori error estimates for linear functionals of the error and give some numerical examples. Copyright (C) 2009 John Wiley & Sons, Ltd.
引用
收藏
页码:584 / 603
页数:20
相关论文
共 50 条
  • [1] Investigation of upper bound adaptive finite element method based on second-order cone programming and higher-order element
    Sun Rui
    Yang Feng
    Yang Jun-sheng
    Zhao Yi-ding
    Zheng Xiang-cou
    Luo Jing-jing
    Yao Jie
    ROCK AND SOIL MECHANICS, 2020, 41 (02) : 687 - 694
  • [2] Adaptive Finite Element Approximations on Nonmatching Grids for Second-Order Elliptic Problems
    Chen, Hongsen
    Ewing, Richard E.
    Qin, Guan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (04) : 785 - 806
  • [3] A weak Galerkin finite element method for second-order elliptic problems
    Wang, Junping
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 : 103 - 115
  • [4] A discontinuous finite volume element method for second-order elliptic problems
    Bi, Chunjia
    Liu, Mingming
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 425 - 440
  • [5] A smoothed finite element method using second-order cone programming
    Meng, Jingjing
    Zhang, Xue
    Huang, Jinsong
    Tang, Hongxiang
    Mattsson, Hans
    Laue, Jan
    COMPUTERS AND GEOTECHNICS, 2020, 123
  • [6] A quadrature finite element method for semilinear second-order hyperbolic problems
    Mustapha, K.
    Mustapha, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 350 - 367
  • [7] Free Vibration Analysis of Second-Order Continuity Plate Element Resting on Pasternak Type Foundation Using Finite Element Method
    Dutta, Ashis Kumar
    Bandyopadhyay, Debasish
    Mandal, Jagat Jyoti
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2022, 15 (06) : 1431 - 1447
  • [8] Free Vibration Analysis of Second-Order Continuity Plate Element Resting on Pasternak Type Foundation Using Finite Element Method
    Ashis Kumar Dutta
    Debasish Bandyopadhyay
    Jagat Jyoti Mandal
    International Journal of Pavement Research and Technology, 2022, 15 : 1431 - 1447
  • [9] The implications of second-order functional derivative convergence for adaptive finite-element electromagnetics
    McFee, S
    Giannacopoulos, D
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 457 - 460
  • [10] A second-order hybrid finite-element/volume method for viscoelastic flows
    Wapperom, P
    Webster, MF
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 79 (2-3) : 405 - 431