Computationally efficient parameter estimation for harmonic sinusoidal signals

被引:62
|
作者
Li, H [1 ]
Stoica, P
Li, J
机构
[1] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA
[2] Univ Uppsala, Dept Syst & Control, SE-75103 Uppsala, Sweden
[3] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
关键词
harmonic sinusoidal signal; fundamental frequency estimation; weighted least squares;
D O I
10.1016/S0165-1684(00)00103-1
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A Markov-like weighted least squares (WLS) estimator is presented herein for harmonic sinusoidal parameter estimation. The estimator involves two distinct steps whereby it first obtains a set of initial parameter estimates that neglect the harmonic structure by some standard sinusoidal parameter estimation technique, and then the initial parameter estimates are refined via a WLS fit. Numerical results suggest that the proposed estimator achieves similar performance to the optimal nonlinear least-squares method for a moderate or large number of data samples and/or signal-to-noise ratio (SNR), but at a significantly reduced computational complexity. Furthermore, the former is observed to have a lower threshold SNR than the latter. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1937 / 1944
页数:8
相关论文
共 50 条
  • [1] A Computationally Efficient Fine Frequency Estimation Method for Harmonic Signals
    Celebi, Utku
    Candan, Cagatay
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [2] Variable order harmonic sinusoidal parameter estimation for speech and audio signals
    Christensen, Mads Graesboll
    Jensen, Soren Holdt
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 1126 - +
  • [3] Computationally Efficient Sinusoidal Parameter Estimation From Signed Measurements: ADMM Approaches
    Zhu, Heng
    Liu, Fangqing
    Li, Jian
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1798 - 1802
  • [4] Robust adaptive parameter estimation of sinusoidal signals
    Na, Jing
    Yang, Juan
    Wu, Xing
    Guo, Yu
    AUTOMATICA, 2015, 53 : 376 - 384
  • [5] Computationally efficient estimation of sinusoidal frequency at low SNR.
    Umesh, S
    Nelson, D
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2797 - 2800
  • [6] An Adaptive Filter for Parameter Estimation of Damped Sinusoidal Signals
    Jahvani, Mohammad
    Guay, Martin
    IFAC PAPERSONLINE, 2021, 54 (03): : 354 - 359
  • [7] Damped sinusoidal signals parameter estimation in frequency domain
    Qian, Fengyong
    Leung, Shuhung
    Zhu, Yuesheng
    Wong, Waiki
    Pao, Derek
    Lau, Winghong
    SIGNAL PROCESSING, 2012, 92 (02) : 381 - 391
  • [8] An Enhanced Genetic Algorithm for Parameter Estimation of Sinusoidal Signals
    Jiang, Chao
    Serrao, Pruthvi
    Liu, Mingjie
    Cho, Chongdu
    APPLIED SCIENCES-BASEL, 2020, 10 (15):
  • [9] An iterative MMSE procedure for parameter estimation of damped sinusoidal signals
    Li, HT
    Djuric, PM
    SIGNAL PROCESSING, 1996, 51 (02) : 105 - 120
  • [10] Parameter estimation of coupled polynomial phase and sinusoidal FM signals
    Djurovic, Igor
    Wang, Pu
    Simeunovic, Marko
    Orlik, Philip, V
    SIGNAL PROCESSING, 2018, 149 : 1 - 13