Difference-Guided Representation Learning Network for Multivariate Time-Series Classification

被引:12
|
作者
Ma, Qianli [1 ]
Chen, Zipeng [1 ]
Tian, Shuai [1 ]
Ng, Wing W. Y. [1 ,2 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] South China Univ Technol, Guangdong Prov Key Lab Computat Intelligence & Cy, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Time series analysis; Feature extraction; Support vector machines; Hidden Markov models; Time measurement; Data mining; Principal component analysis; Convolutional neural network (CNN); long short-term memory network (LSTM); multivariate time-series (MTS) classification; temporal difference information;
D O I
10.1109/TCYB.2020.3034755
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multivariate time series (MTSs) are widely found in many important application fields, for example, medicine, multimedia, manufacturing, action recognition, and speech recognition. The accurate classification of MTS has become an important research topic. Traditional MTS classification methods do not explicitly model the temporal difference information of time series, which is, in fact, important and reflects the dynamic evolution information. In this article, the difference-guided representation learning network (DGRL-Net) is proposed to guide the representation learning of time series by dynamic evolution information. The DGRL-Net consists of a difference-guided layer and a multiscale convolutional layer. First, in the difference-guided layer, we propose a difference gating LSTM to model the time dependency and dynamic evolution of the time series to obtain feature representations of both raw and difference series. Then, these two representations are used as two input channels of the multiscale convolutional layer to extract multiscale information. Extensive experiments demonstrate that the proposed model outperforms state-of-the-art methods on 18 MTS benchmark datasets and achieves competitive results on two skeleton-based action recognition datasets. Furthermore, the ablation study and visualized analysis are designed to verify the effectiveness of the proposed model.
引用
收藏
页码:4717 / 4727
页数:11
相关论文
共 50 条
  • [1] Learning a symbolic representation for multivariate time series classification
    Baydogan, Mustafa Gokce
    Runger, George
    DATA MINING AND KNOWLEDGE DISCOVERY, 2015, 29 (02) : 400 - 422
  • [2] Learning a symbolic representation for multivariate time series classification
    Mustafa Gokce Baydogan
    George Runger
    Data Mining and Knowledge Discovery, 2015, 29 : 400 - 422
  • [3] Spatio-Temporal Consistency for Multivariate Time-Series Representation Learning
    Lee, Sangho
    Kim, Wonjoon
    Son, Youngdoo
    IEEE ACCESS, 2024, 12 : 30962 - 30975
  • [4] DYNAMIC REPRESENTATION OF MULTIVARIATE TIME-SERIES DATA
    MEZRICH, JJ
    FRYSINGER, S
    SLIVANOVSKI, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1984, 79 (385) : 34 - 40
  • [5] Multivariate Time-Series Representation Learning via Hierarchical Correlation Pooling Boosted Graph Neural Network
    Wang, Yucheng
    Wu, Min
    Li, Xiaoli
    Xie, Lihua
    Chen, Zhenghua
    IEEE Transactions on Artificial Intelligence, 2024, 5 (01): : 321 - 333
  • [6] Representation and Classification of Echo State Network Models for Multivariate Time Series
    He, Sha
    Zhou, Xiren
    Chen, Qiuju
    Computer Engineering and Applications, 2023, 59 (15) : 132 - 140
  • [8] FEAT: A general framework for feature-aware multivariate time-series representation learning
    Kim, Subin
    Chung, Euisuk
    Kang, Pilsung
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [9] Multiple kernel representation and classification of multivariate satellite-image time-series for crop mapping
    Niazmardi, Saeid
    Homayouni, Saeid
    Safari, Abdolreza
    Shang, Jiali
    McNairn, Heather
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (01) : 149 - 168
  • [10] Machine learning assisted network classification from symbolic time-series
    Panday, Atish
    Lee, Woo Seok
    Dutta, Subhasanket
    Jalan, Sarika
    CHAOS, 2021, 31 (03)