SU(2)-invariant valuations

被引:0
|
作者
Alesker, S [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain an explicit classification of SU(2)-invariant translation in variant continuous valuations on C-2 similar or equal to R-4. In this paper we obtain explicit classification of SU(2)-invariant translation invariant continuous valuations on C-2 similar or equal to R-4. The main result is Theorem 1 below. Let us recall the relevant definitions. Let V be a finite dimensional real vector space. Let K(V) denote the class of all convex compact subsets of V.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Rotation Invariant Valuations
    Jensen, Eva B. Vedel
    Kiderlen, Markus
    TENSOR VALUATIONS AND THEIR APPLICATIONS IN STOCHASTIC GEOMETRY AND IMAGING, 2017, 2177 : 185 - 212
  • [2] QUANTUM SU(2)-INVARIANTS DOMINATE CASSON SU(2)-INVARIANT
    MURAKAMI, H
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1994, 115 : 253 - 281
  • [3] Random SU(2) invariant tensors
    Li, Youning
    Han, Muxin
    Ruan, Dong
    Zeng, Bei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (17)
  • [4] Positivity of Valuations on Convex Bodies and Invariant Valuations by Linear Actions
    Dang, Nguyen-Bac
    Xiao, Jian
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 10718 - 10777
  • [5] Constraints on SU(2) ⊗ SU(2) invariant polynomials for a pair of entangled qubits
    V. Gerdt
    A. Khvedelidze
    Yu. Palii
    Physics of Atomic Nuclei, 2011, 74 : 893 - 900
  • [6] Positivity of Valuations on Convex Bodies and Invariant Valuations by Linear Actions
    Nguyen-Bac Dang
    Jian Xiao
    The Journal of Geometric Analysis, 2021, 31 : 10718 - 10777
  • [7] Constraints on SU(2) ⊗ SU(2) Invariant Polynomials for a Pair of Entangled Qubits
    Gerdt, V.
    Khvedelidze, A.
    Palii, Yu
    PHYSICS OF ATOMIC NUCLEI, 2011, 74 (06) : 893 - 900
  • [8] SU(2)-invariant G2-instantons
    Lotay, Jason D.
    Oliveira, Goncalo
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 961 - 1011
  • [10] su(q)(2)-invariant Schrodinger equations
    IracAstaud, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 (2-3) : 179 - 186