Underwater Image Enhancement Based on Multi-Scale Fusion and Global Stretching of Dual-Model

被引:14
|
作者
Song, Huajun [1 ]
Wang, Rui [1 ]
机构
[1] China Univ Petr, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
underwater; image enhancement; fusion; global stretching; COLOR; BENCHMARKING; HISTOGRAM; CONTRAST; SYSTEM;
D O I
10.3390/math9060595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Aimed at the two problems of color deviation and poor visibility of the underwater image, this paper proposes an underwater image enhancement method based on the multi-scale fusion and global stretching of dual-model (MFGS), which does not rely on the underwater optical imaging model. The proposed method consists of three stages: Compared with other color correction algorithms, white-balancing can effectively eliminate the undesirable color deviation caused by medium attenuation, so it is selected to correct the color deviation in the first stage. Then, aimed at the problem of the poor performance of the saliency weight map in the traditional fusion processing, this paper proposed an updated strategy of saliency weight coefficient combining contrast and spatial cues to achieve high-quality fusion. Finally, by analyzing the characteristics of the results of the above steps, it is found that the brightness and clarity need to be further improved. The global stretching of the full channel in the red, green, blue (RGB) model is applied to enhance the color contrast, and the selective stretching of the L channel in the Commission International Eclairage-Lab (CIE-Lab) model is implemented to achieve a better de-hazing effect. Quantitative and qualitative assessments on the underwater image enhancement benchmark dataset (UIEBD) show that the enhanced images of the proposed approach achieve significant and sufficient improvements in color and visibility.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Underwater Image Enhancement Based on Global and Local Equalization of Histogram and Dual-Image Multi-Scale Fusion
    Bai, Linfeng
    Zhang, Weidong
    Pan, Xipeng
    Zhao, Chenping
    IEEE ACCESS, 2020, 8 : 128973 - 128990
  • [2] Underwater image enhancement based on color correction and complementary dual image multi-scale fusion
    Lei, Xiaoyan
    Wang, Huibin
    Shen, Jie
    Liu, Haiyun
    APPLIED OPTICS, 2022, 61 (17) : 5304 - 5314
  • [3] Underwater image enhancement based on color balance and multi-scale fusion
    Hu Z.
    Chen Q.
    Zhu D.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (17): : 2133 - 2146
  • [4] Underwater Image Enhancement Based on Color Balance and Multi-Scale Fusion
    Chen, Qi
    Zhang, Ze
    Li, Gelun
    IEEE PHOTONICS JOURNAL, 2022, 14 (06):
  • [5] Underwater image enhancement based on color correction and multi-scale fusion
    Tao, Yang
    Wu, Ping
    Liu, Yuting
    Fang, Wenjun
    Zhou, Liqun
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2024, 39 (08) : 1046 - 1056
  • [6] An underwater image enhancement method based on multi-scale layer decomposition and fusion
    Yang, Jie
    Wang, Jun
    SIGNAL PROCESSING, 2025, 227
  • [7] Underwater image enhancement based on adaptive color correction and multi-scale fusion
    Jinyu Shi
    Shanshan Yu
    Huanan Li
    Xiuguo Zhang
    Changxin Liu
    Multimedia Tools and Applications, 2024, 83 : 12535 - 12559
  • [8] Underwater image enhancement based on adaptive color correction and multi-scale fusion
    Shi, Jinyu
    Yu, Shanshan
    Li, Huanan
    Zhang, Xiuguo
    Liu, Changxin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (05) : 12535 - 12559
  • [9] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695
  • [10] Underwater Image Enhancement Based on Local Contrast Correction and Multi-Scale Fusion
    Gao, Farong
    Wang, Kai
    Yang, Zhangyi
    Wang, Yejian
    Zhang, Qizhong
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (02) : 1 - 17