Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes

被引:14
|
作者
Geevers, S. [1 ]
Mulder, W. A. [2 ,3 ]
van der Vegt, J. J. W. [1 ]
机构
[1] Univ Twente, Dept Appl Math, Enschede, Netherlands
[2] Shell Global Solut Int BV, Amsterdam, Netherlands
[3] Delft Univ Technol, Delft, Netherlands
关键词
Tetrahedral mesh; Explicit finite element method; Mass lumping; Discontinuous Galerkin method; Wave equation; Dispersion analysis; DISCONTINUOUS GALERKIN METHOD; HIGH-ORDER;
D O I
10.1007/s10915-018-0709-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax-Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.
引用
收藏
页码:372 / 396
页数:25
相关论文
共 50 条
  • [1] Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes
    S. Geevers
    W. A. Mulder
    J. J. W. van der Vegt
    Journal of Scientific Computing, 2018, 77 : 372 - 396
  • [2] Finite element LES and VMS methods on tetrahedral meshes
    John, Volker
    Kindl, Adela
    Suciu, Carina
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (12) : 3095 - 3102
  • [3] GRADED TETRAHEDRAL FINITE-ELEMENT MESHES
    FIELD, DA
    SMITH, WD
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 31 (03) : 413 - 425
  • [4] Hierarchic finite element bases on unstructured tetrahedral meshes
    Ainsworth, M
    Coyle, J
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 58 (14) : 2103 - 2130
  • [5] Automatic generation of hexahedral and tetrahedral finite element meshes
    Mei, ZY
    Fan, YQ
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN & COMPUTER GRAPHICS, 1999, : 1 - 5
  • [6] Transformation of Hexaedral Finite Element Meshes into Tetrahedral Meshes According to Quality Criteria
    T. Apel
    N. Düvelmeyer
    Computing, 2003, 71 : 293 - 304
  • [7] Transformation of hexaedral finite element meshes into tetrahedral meshes according to quality criteria
    Apel, T
    Düvelmeyer, N
    COMPUTING, 2003, 71 (04) : 293 - 304
  • [8] Nonconforming Finite Element Methods for Wave Propagation in Metamaterials
    Yao, Changhui
    Wang, Lixiu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2017, 10 (01) : 145 - 166
  • [9] Finite element modelling of shock wave propagation over obstacles
    Soukup J.
    Klimenda F.
    Skočilas J.
    Žmindák M.
    Manufacturing Technology, 2019, 19 (03): : 499 - 507
  • [10] Dispersion analysis of spectral element methods for elastic wave propagation
    Seriani, G.
    Oliveira, S. P.
    WAVE MOTION, 2008, 45 (06) : 729 - 744