Four-dimensional Kahler metrics admitting c-projective vector fields

被引:6
|
作者
Bolsinov, Alexey V. [1 ]
Matveev, Vladimir S. [2 ]
Mettler, Thomas [3 ]
Rosemann, Stefan [2 ]
机构
[1] Univ Loughborough, Sch Math, Loughborough LE11 3TU, Leics, England
[2] Univ Jena, Inst Math, D-07743 Jena, Germany
[3] ETH, Dept Math, CH-8092 Zurich, Switzerland
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 103卷 / 03期
基金
瑞士国家科学基金会;
关键词
Kahler geometry; c-Projective geometry; Hamiltonian; 2-forms; HAMILTONIAN; 2-FORMS; GEOMETRY;
D O I
10.1016/j.matpur.2014.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A vector field on a Kahler manifold is called c-projective if its flow preserves the J-planar curves. We give a complete local classification of Kahler real 4-dimensional manifolds that admit an essential c-projective vector field. An important technical step is a local description of 4-dimensional c-projectively equivalent metrics of arbitrary signature. As an application of our results we prove the natural analog of the classical Yano-Obata conjecture in the pseudo-Riemannian 4-dimensional case. (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:619 / 657
页数:39
相关论文
共 50 条