On the energy spectrum for weak solutions of the Navier-Stokes equations

被引:5
|
作者
Mazzucato, AL [1 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
D O I
10.1088/0951-7715/18/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the decay at high wavenumbers of the energy spectrum for weak solutions to the three-dimensional forced Navier-Stokes equation in the whole space. We observe that known regularity criteria imply that solutions are regular if the energy density decays at a sufficiently fast rate. This result applies also to a class of solutions with infinite global energy by localizing the Navier-Stokes equation. We consider certain modified Leray backward self-similar solutions, which belong to this class, and show that their energy spectrum decays at the critical rate for regularity. Therefore, this rate of decay is consistent with the appearance of an isolated self-similar singularity.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条