Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds
被引:47
|
作者:
Koski, Caitlin
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, WM Keck Biomed Mat Res Lab, Sch Mech & Mat Engn, Pullman, WA 99164 USAWashington State Univ, WM Keck Biomed Mat Res Lab, Sch Mech & Mat Engn, Pullman, WA 99164 USA
Koski, Caitlin
[1
]
Bose, Susmita
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, WM Keck Biomed Mat Res Lab, Sch Mech & Mat Engn, Pullman, WA 99164 USAWashington State Univ, WM Keck Biomed Mat Res Lab, Sch Mech & Mat Engn, Pullman, WA 99164 USA
Bose, Susmita
[1
]
机构:
[1] Washington State Univ, WM Keck Biomed Mat Res Lab, Sch Mech & Mat Engn, Pullman, WA 99164 USA
Recent efforts in the bone and tissue engineering field have been made to create resorbable bone scaffolds that mimic the structure and function of natural bone. While enhancing mechanical strength through increased ceramics loading has been shown for sintered parts, few studies have reported that the crosslinked polymer provides strength for the composite parts without post processing. The objective of this study is to assess the effect of amylose content on the mechanical and physical properties of starch-hydroxyapatite (HA) composite scaffolds for bone and tissue engineering applications. Starch-HA composite scaffolds utilizing corn, potato, and cassava sources of gelatinized starch were fabricated through the utilization of a self-designed and built solid freeform fabricator (SFF). It was hypothesized that the mechanical strength of the starch-HA scaffolds would increase with increasing amylose content based on the botanical source and weight percentage added. Overall, compressive strengths of scaffolds were achieved up to 12.49 +/- 0.22 MPa, through the implementation of 5.46 wt% corn starch with a total amylose content of 1.37%. The authors propose a reinforcement mechanism through a matrix of gelled starch particles and interlocking of hydroxyl-rich amylose with hydroxyapatite through hydrogen bonding. XRD, FTIR, and FESEM were utilized to further characterize these scaffold structures, ultimately elucidating amylose as a biologically relevant reinforcement phase of resorbable bone scaffolds.
机构:
Vilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, LithuaniaVilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, Lithuania
Kundreckaite, Paula
Sesok, Andzela
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, LithuaniaVilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, Lithuania
Sesok, Andzela
Stonkus, Rimantas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Gediminas Tech Univ, Fac Mech, Dept Mechatron Robot & Digital Mfg, Plytines Str 28, Vilnius, LithuaniaVilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, Lithuania
Stonkus, Rimantas
Gaidulis, Gediminas
论文数: 0引用数: 0
h-index: 0
机构:
Vilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, LithuaniaVilnius Gediminas Tech Univ, Fac Mech, Dept Biomech Engn, Plytines Str 25, Vilnius, Lithuania
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Bose, Susmita
Koski, Caitlin
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
Koski, Caitlin
Bhattacharjee, Arjak
论文数: 0引用数: 0
h-index: 0
机构:
Washington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USAWashington State Univ, Sch Mech & Mat Engn, WM Keck Biomed Mat Res Lab, Pullman, WA 99164 USA
机构:
TECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
Univ Publ Navarra, Dept Engn, Pamplona 31006, SpainTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
Calderon-Uriszar-Aldaca, Inigo
Perez, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
TECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, SpainTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
机构:
TECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, SpainTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
机构:
Padova Univ, Dept Phys & Astron, Via Marzolo 8, I-35131 Padua, ItalyTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
Patelli, Alessandro
Matanza, Amaia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Basque Country, CSIC, Ctr Fis Mat, Mat Phys Ctr MPC, Paseo Manuel Lardizabal 5, Donostia San Sebastian 20018, SpainTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain
机构:
TECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, SpainTECNALIA, Basque Res & Technol Alliance BRTA, Mikeletegi Pasealekua 2, Donostia San Sebastian 20009, Spain