Study on density peaks clustering based on k-nearest neighbors and principal component analysis

被引:371
|
作者
Du, Mingjing [1 ,2 ]
Ding, Shifei [1 ,2 ]
Jia, Hongjie [1 ,2 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100090, Peoples R China
基金
中国国家自然科学基金;
关键词
Data clustering; Density peaks; k Nearest neighbors (KNN); Principal component analysis (PCA); ALGORITHM; SEARCH;
D O I
10.1016/j.knosys.2016.02.001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Density peaks clustering (DPC) algorithm published in the US journal Science in 2014 is a novel clustering algorithm based on density. It needs neither iterative process nor more parameters. However, original algorithm only has taken into account the global structure of data, which leads to missing many clusters. In addition, DPC does not perform well when data sets have relatively high dimension. Especially, DPC generates wrong number of clusters of real-world data sets. In order to overcome the first problem, we propose a density peaks clustering based on k nearest neighbors (DPC-KNN) which introduces the idea of k nearest neighbors (KNN) into DPC and has another option for the local density computation. In order to overcome the second problem, we introduce principal component analysis (PCA) into the model of DPC-KNN and further bring forward a method based on PCA (DPC-KNN-PCA), which preprocesses high dimensional data. By experiments on synthetic data sets, we demonstrate the feasibility of our algorithms. By experiments on real-world data sets, we compared this algorithm with k-means algorithm and spectral clustering (SC) algorithm in accuracy. Experimental results show that our algorithms are feasible and effective. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 50 条
  • [1] Density peaks clustering based on k-nearest neighbors sharing
    Fan, Tanghuai
    Yao, Zhanfeng
    Han, Longzhe
    Liu, Baohong
    Lv, Li
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (05):
  • [2] Local density based on weighted K-nearest neighbors for density peaks clustering
    Ding, Sifan
    Li, Min
    Huang, Tianyi
    Zhu, William
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [3] Density Peaks Clustering Algorithm Based on Representative Points and K-nearest Neighbors
    Zhang Q.-H.
    Zhou J.-P.
    Dai Y.-Y.
    Wang G.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (12): : 5629 - 5648
  • [4] Density peaks clustering based on k-nearest neighbors and self-recommendation
    Sun, Lin
    Qin, Xiaoying
    Ding, Weiping
    Xu, Jiucheng
    Zhang, Shiguang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (07) : 1913 - 1938
  • [5] Density peaks clustering based on k-nearest neighbors and self-recommendation
    Lin Sun
    Xiaoying Qin
    Weiping Ding
    Jiucheng Xu
    Shiguang Zhang
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 1913 - 1938
  • [6] Density peaks clustering algorithm with K-nearest neighbors and weighted similarity
    Zhao J.
    Chen L.
    Wu R.-X.
    Zhang B.
    Han L.-Z.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (12): : 2349 - 2357
  • [7] Density Peaks Clustering Algorithm Based on Weighted k-Nearest Neighbors and Geodesic Distance
    Liu, Lina
    Yu, Donghua
    IEEE ACCESS, 2020, 8 : 168282 - 168296
  • [8] A novel density peaks clustering algorithm for automatic selection of clustering centers based on K-nearest neighbors
    Wang, Zhihe
    Wang, Huan
    Du, Hui
    Chen, Shiyin
    Shi, Xinxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (07) : 11875 - 11894
  • [9] Density Peaks Clustering Algorithm Based on K Nearest Neighbors
    Yin, Shihao
    Wu, Runxiu
    Li, Peiwu
    Liu, Baohong
    Fu, Xuefeng
    ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING (ECC 2021), 2022, 268 : 129 - 144
  • [10] Effective Density Peaks Clustering Algorithm Based on the Layered K-Nearest Neighbors and Subcluster Merging
    Ren, Chunhua
    Sun, Linfu
    Yu, Yang
    Wu, Qishi
    IEEE ACCESS, 2020, 8 : 123449 - 123468