Techno-economic optimization and off-design analysis of CO2 purification units for cement plants with oxyfuel-based CO2 capture

被引:20
|
作者
Magli, Francesco [1 ,2 ]
Spinelli, Maurizio [3 ]
Fantini, Martina [3 ]
Romano, Matteo Carmelo [1 ]
Gatti, Manuele [1 ]
机构
[1] Politecn Milan, DOE, Via Lambruschini 4, I-20156 Milan, Italy
[2] Buzzi Unicem SpA, Via Luigi Buzzi 6, I-15033 Casale Monferrato, Italy
[3] Lab Energia & Ambiente Piacenza LEAP, Via Nino Bixio 27-C, I-29121 Piacenza, Italy
基金
中国国家自然科学基金; 欧盟地平线“2020”;
关键词
CO2 purification unit; CO2; capture; Oxyfuel; Calcium looping; Cement decarbonization; FUEL COMBUSTION TECHNOLOGY; CARBON CAPTURE; NUMERICAL OPTIMIZATION; LOOPING PROCESS; COMPRESSION; STATE; INTEGRATION;
D O I
10.1016/j.ijggc.2022.103591
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper evaluates the technical and economic performance, as well as the direct/indirect CO2 emissions of the CO2 Purification Unit (CPU) for cement plants equipped with oxyfuel-based CO2 capture. Two configurations, targeting two different outlet CO2 specifications ('moderate' 95% purity and 'high' 99.9% purity) are designed, modelled and optimized in order to minimize the incremental clinker production cost for different values of the carbon tax. Mass and energy balances are simulated with Aspen Plus, while the operating conditions are numerically optimized with Matlab. Results show that moderate purity can be achieved with an increased cost of clinker of 16.3 euro/tclk (CO2 recovery 99.3%), while the base high purity configuration leads to a 19.3 euro/tclk increase (CO2 recovery 96.1%). Sensitivity analyses are carried out on design parameters (fuel and air infiltrations in the oxyfuel calciner line) and exogenous factors (carbon tax, CO2 intensity of electricity). Air infiltration rate has the highest impact on the incremental cost of clinker (increased by 25% when air leakage grows from 0 to 10%) and on the selection of optimal operational conditions. Off-design analyses aimed at assessing the impact of air infiltration changing over time highlight the relevance of designing the CPU for the scenario with air infiltrations, while selecting reasonable temperature differences (e.g. 5K) to avoid operability issues in the cold box heat exchanger. For the base case CPU, the cost of clinker increases by 3 euro/tclk when moving from zero to 10% air infiltration.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Techno-economic assessment of CO2 direct air capture plants
    Fasihi, Mandi
    Efimova, Olga
    Breyer, Christian
    JOURNAL OF CLEANER PRODUCTION, 2019, 224 : 957 - 980
  • [2] Techno-economic and environmental assessment of CO2 capture technologies in the cement industry
    Antzaras, Andy N.
    Papalas, Theodoros
    Heracleous, Eleni
    Kouris, Charalampos
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [3] Techno-economic assessment of CO2 capture retrofit to existing power plants
    Gibbins, Jon
    Chalmers, Hannah
    Lucquiaud, Mathieu
    Li, Jia
    McGlashan, Niall
    Liang, Xi
    Davison, John
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1835 - 1842
  • [4] Modification of postcombustion CO2 capture process: A techno-economic analysis
    Sultan, Haider
    Bhatti, Umair Hassan
    Muhammad, Hafiz Ali
    Nam, Sung Chan
    Baek, Il Hyun
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2021, 11 (01) : 165 - 182
  • [5] Techno-economic analysis of calcium looping processes for low CO2 emission cement plants
    De Lena, Edoardo
    Spinelli, Maurizio
    Gatti, Manuele
    Scaccabarozzi, Roberto
    Campanari, Stefano
    Consonni, Stefano
    Cinti, Giovanni
    Romano, Matteo C.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2019, 82 : 244 - 260
  • [6] Techno-economic study of CO2 capture from natural gas based hydrogen plants
    Tarun, Cynthia B.
    Croiset, Eric
    Douglas, Peter L.
    Gupta, Murlidhar
    Chowdhury, Mohammad H. M.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (01) : 55 - 61
  • [7] Membrane process design for biohydrogen purification with simultaneous CO2 capture: Feasibility and techno-economic assessment
    Xu, Wenqi
    Lindbrathen, Arne
    Janakiram, Saravanan
    Ansaloni, Luca
    Lei, Linfeng
    Deng, Liyuan
    CHEMICAL ENGINEERING SCIENCE, 2023, 282
  • [8] Techno-economic assessment of CO2 capture possibilities for oil shale power plants
    Saia, Artjom
    Neshumayev, Dmitri
    Hazak, Aaro
    Sander, Priit
    Jarvik, Oliver
    Konist, Alar
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 169
  • [9] Techno-economic Analysis of Direct Air Carbon Capture with CO2 Utilisation
    Daniel, Thorin
    Masini, Alice
    Milne, Cameron
    Nourshagh, Neeka
    Iranpour, Cameron
    Xuan, Jin
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [10] ADSORPTION METHOD FOR CO2 CAPTURE: EXPERIMENTAL RESULTS AND TECHNO-ECONOMIC ANALYSIS
    Smutna, J.
    Stefanica, J.
    Vitvarova, M.
    Ciahotny, K.
    Pilar, L.
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CHEMICAL TECHNOLOGY, 1ST EDITION, 2016, : 321 - 324