A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals

被引:2
|
作者
Fong, CK [1 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
Pettis integrability; HK-integrals; Saks-Henstock's property;
D O I
10.1023/A:1021719627933
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
引用
收藏
页码:531 / 536
页数:6
相关论文
共 35 条