On the Aubry-Mather theory in statistical mechanics

被引:26
|
作者
Candel, A [1 ]
de la Llave, R
机构
[1] CALTECH, Dept Math, Pasadena, CA 91125 USA
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
Phase Space; Group Action; Statistical Mechanics; Mild Condition; Rotation Number;
D O I
10.1007/s002200050313
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize Aubry-Mather theory for configurations on the line to general sets with a group action. Cocycles on the group play the role of rotation numbers. The notion of Birkhoff configuration can be generalized to this setting. Under mild conditions on the group, we show how to find Birkhoff pound states for many-body interactions which are ferromagnetic, invariant under the group action and having periodic phase space.
引用
收藏
页码:649 / 669
页数:21
相关论文
共 50 条
  • [1] Ground States and Critical Points for Aubry-Mather Theory in Statistical Mechanics
    de la Llave, Rafael
    Valdinoci, Enrico
    JOURNAL OF NONLINEAR SCIENCE, 2010, 20 (02) : 153 - 218
  • [2] Aubry-Mather theory
    Siburg, KF
    PRINCIPLE OF LEAST ACTION IN GEOMETRY AND DYNAMICS, 2004, 1844 : 1 - +
  • [3] Aubry-Mather theory on graphs
    Siconolfi, Antonio
    Sorrentino, Alfonso
    NONLINEARITY, 2023, 36 (11) : 5819 - 5859
  • [4] On the Aubry–Mather Theory in Statistical Mechanics
    A. Candel
    R. de la Llave
    Communications in Mathematical Physics, 1998, 192 : 649 - 669
  • [5] Aubry-Mather theory for homeomorphisms
    Fathi, Albert
    Pageault, Pierre
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 1187 - 1207
  • [6] On the stochastic Aubry-Mather theory
    Iturriaga, R
    Sánchez-Morgado, H
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2005, 11 (01): : 91 - 99
  • [7] On the Aubry-Mather theory for symbolic dynamics
    Garibaldi, E.
    Lopes, A. O.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2008, 28 : 791 - 815
  • [8] ON AUBRY-MATHER SETS
    VEERMAN, JJP
    TANGERMAN, FM
    PHYSICA D, 1990, 46 (02): : 149 - 162
  • [9] Aubry-Mather theory for Lorentzian manifolds
    Suhr, Stefan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (02)
  • [10] Quantum tomographic Aubry-Mather theory
    Shabani, A.
    Khellat, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)