Robust emotional speech recognition based on binaural model and emotional auditory mask in noisy environments

被引:12
|
作者
Bashirpour, Meysam [1 ]
Geravanchizadeh, Masoud [1 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Tabriz 5166615813, Iran
关键词
Emotional speech recognition; Binaural model; Emotional auditory mask; Classification of emotional states; Kaldi speech recognition system; Noise robustness; INTELLIGIBILITY; FEATURES; DATABASE;
D O I
10.1186/s13636-018-0133-9
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The performance of automatic speech recognition systems degrades in the presence of emotional states and in adverse environments (e.g., noisy conditions). This greatly limits the deployment of speech recognition application in realistic environments. Previous studies in the emotion-affected speech recognition field focus on improving emotional speech recognition using clean speech data recorded in a quiet environment (i.e., controlled studio settings). The goal of this research is to increase the robustness of speech recognition systems for emotional speech in noisy conditions. The proposed binaural emotional speech recognition system is based on the analysis of binaural input signal and an estimated emotional auditory mask corresponding to the recognized emotion. Whereas the binaural signal analyzer has the task of segregating speech from noise and constructing speech mask in a noisy environment, the estimated emotional mask identifies and removes the most emotionally affected spectra-temporal regions of the segregated target speech. In other words, our proposed system combines the two estimated masks (binary mask and emotion-specific mask) of noise and emotion, as a way to decrease the word error rate for noisy emotional speech. The performance of the proposed binaural system is evaluated in clean neutral train/noisy emotional test scenarios for different noise types, signal-to-noise ratios, and spatial configurations of sources. Speech utterances of the Persian emotional speech database are used for the experimental purposes. Simulation results show that the proposed system achieves higher performance, as compared with automatic speech recognition systems chosen as baseline trained with neutral utterances.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Robust emotional speech recognition based on binaural model and emotional auditory mask in noisy environments
    Meysam Bashirpour
    Masoud Geravanchizadeh
    EURASIP Journal on Audio, Speech, and Music Processing, 2018
  • [2] Auditory model for robust speech recognition in real world noisy environments
    Kim, DS
    Lee, SY
    Kil, RM
    Zhu, XL
    ELECTRONICS LETTERS, 1997, 33 (01) : 12 - 13
  • [3] Robust Speech Recognition Based on Binaural Auditory Processing
    Menon, Anjali
    Kim, Chanwoo
    Stern, Richard M.
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 3872 - 3876
  • [4] Linearized distortion model for robust speech recognition in noisy environments
    He, Yong-Jun
    Han, Ji-Qing
    Tongxin Xuebao/Journal on Communications, 2010, 31 (09): : 8 - 14
  • [5] Speech parameters for the robust emotional speech recognition
    Kim W.-G.
    Journal of Institute of Control, Robotics and Systems, 2010, 16 (12) : 1137 - 1142
  • [6] An effective cluster-based model for robust speech detection and speech recognition in noisy environments
    Gorriz, J. M.
    Ramirez, J.
    Segura, J. C.
    Puntonet, C. G.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2006, 120 (01): : 470 - 481
  • [7] An effective cluster-based model for robust speech detection and speech recognition in noisy environments
    Górriz, J.M.
    Ramírez, J.
    Segura, J.C.
    Puntonet, C.G.
    Journal of the Acoustical Society of America, 2006, 120 (01): : 470 - 481
  • [8] Auditory processing of speech signals for robust speech recognition in real-world noisy environments
    Kim, DS
    Lee, SY
    Kil, RM
    IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, 1999, 7 (01): : 55 - 69
  • [9] Emotional Speech Clustering based Robust Speaker Recognition System
    Li, Dongdong
    Yang, Yingchun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 4576 - +
  • [10] Accent classification from an emotional speech in clean and noisy environments
    Priya Dharshini G
    K Sreenivasa Rao
    Multimedia Tools and Applications, 2023, 82 : 3485 - 3508