Raman Microscopy of Lithium-Manganese-Rich Transition Metal Oxide Cathodes

被引:129
|
作者
Ruther, Rose E. [1 ]
Callender, Andrew F. [2 ]
Zhou, Hui [1 ]
Martha, Surendra K. [3 ]
Nanda, Jagjit [1 ]
机构
[1] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA
[2] Tennessee Technol Univ, Dept Chem, Cookeville, TN 38505 USA
[3] Indian Inst Technol Hyderabad, Dept Chem, Yeddumailaram 502205, Telangana, India
关键词
SITU X-RAY; ION BATTERY CATHODE; LOCAL-STRUCTURE; VOLTAGE FADE; ELECTROCHEMICAL ACTIVITY; ELECTRODE MATERIALS; LATTICE-VIBRATIONS; SURFACE; NI; PERFORMANCE;
D O I
10.1149/2.0361501jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-rich and manganese-rich (LMR) layered transition metal (TM) oxide composites with general formula xLi(2)MnO(3) center dot (1-x)LiMO2 (M = Ni, Co, Mn) are promising cathode candidates for high energy density lithium ion batteries. Lithium-manganese-rich TM oxides crystallize as a nanocomposite layered phase whose structure further evolves with electrochemical cycling. Raman spectroscopy is a powerful tool to monitor the crystal chemistry and correlate phase changes with electrochemical behavior. While several groups have reported Raman spectra of lithium rich TM oxides, the data show considerable variability in terms of both the vibrational features observed and their interpretation. In this study, Raman microscopy is used to investigate lithium-rich and manganese-rich TM cathodes as a function of voltage and electrochemical cycling at various temperatures. No growth of a spinel phase is observed within the cycling conditions. However, analysis of the Raman spectra does indicate the structure of LMR-NMC deviates significantly from an ideal layered phase. The results also highlight the importance of using low laser power and large sample sizes to obtain consistent data sets. (C) The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. All rights reserved.
引用
收藏
页码:A98 / A102
页数:5
相关论文
共 50 条
  • [1] Effect of Mn, Ni, Co transition metal ratios in lithium rich metal oxide cathodes on lithium ion battery performance
    Cetin, Busra
    Camtakan, Zeyneb
    Yuca, Neslihan
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 2490 - 2494
  • [2] High performance lithium-manganese-rich cathode material with reduced impurities
    Wang, Zhong
    Yin, Yanping
    Ren, Yang
    Wang, Zhenyao
    Gao, Min
    Ma, Tianyuan
    Zhuang, Weidong
    Lu, Shigang
    Fan, Ailing
    Amine, Khalil
    Chen, Zonghai
    NANO ENERGY, 2017, 31 : 247 - 257
  • [3] Dual-Salt Electrolyte Additives Enabled Stable Lithium Metal Anode/Lithium-Manganese-Rich Cathode Batteries
    Zhou, Junhua
    Lian, Xueyu
    Shi, Qitao
    Liu, Yu
    Yang, Xiaoqin
    Bachmatiuk, Alicja
    Liu, Lijun
    Sun, Jingyu
    Yang, Ruizhi
    Choi, Jin-Ho
    Rummeli, Mark H.
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (01):
  • [4] A Strategy for Carbon Nanotubes Modified Lithium-Manganese-Rich Cathode Material
    Li Zhao
    Wang Zhong
    Li Qiang
    Ban Li-Qing
    Zhuang Wei-Dong
    Lu Shi-Gang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2019, 35 (09) : 1561 - 1569
  • [5] Fluorination Effect on Lithium- and Manganese-Rich Layered Oxide Cathodes
    Wang, Faxing
    Zuo, Peng
    Xue, Zhichen
    Liu, Yijin
    Wang, Chongmin
    Chen, Guoying
    ACS ENERGY LETTERS, 2024, 9 (03) : 1249 - 1260
  • [6] Transition metal alloy-modulated lithium manganese oxide nanosystem for energy storage in lithium-ion battery cathodes
    West, Natasha
    Ozoemena, Kenneth I.
    Ikpo, Chinwe O.
    Baker, Priscilla G. L.
    Iwuoha, Emmanuel I.
    ELECTROCHIMICA ACTA, 2013, 101 : 86 - 92
  • [7] Quantifying oxygen distortions in lithium-rich transition-metal-oxide cathodes using ABF STEM
    Liberti, E.
    Lozano, J. G.
    Osorio, M. A. Perez
    Roberts, M. R.
    Bruce, P. G.
    Kirkland, A., I
    ULTRAMICROSCOPY, 2020, 210 (210)
  • [8] High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries
    Gummow, Rosalind J.
    Sharma, Neeraj
    Feng, Ruishu
    Han, Guihong
    He, Yinghe
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1856 - A1862
  • [9] Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes
    Simonelli, Laura
    Sorrentino, Andrea
    Marini, Carlo
    Ramanan, Nitya
    Heinis, Dominique
    Olszewski, Wojciech
    Mullaliu, Angelo
    Birrozzi, Agnese
    Laszczynski, Nina
    Giorgetti, Marco
    Passerini, Stefano
    Tonti, Dino
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (12): : 3359 - 3368
  • [10] Origins and Importance of Intragranular Cracking in Layered Lithium Transition Metal Oxide Cathodes
    Morzy, Jedrzej K.
    Dose, Wesley M.
    Vullum, Per Erik
    Lai, May Ching
    Mahadevegowda, Amoghavarsha
    De Volder, Michael F. L.
    Ducati, Caterina
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (09): : 3945 - 3956