A mathematical and numerical model for reactive fluid flow systems

被引:11
|
作者
Holstad, A [1 ]
机构
[1] Inst Energy Technol, N-2007 Kjeller, Norway
关键词
partial differential equations; finite volume methods; Runge-Kutta methods; chemical reacting flow; porous media;
D O I
10.1023/A:1011507932239
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We formulate mathematical and numerical models for multispecies, multi-phase and non-isothermal reactive fluid flow in porous media focusing on the chemical reactions and the transport of solutes. Mass conservation and stability in the time integration are emphasized. We use cell-centered finite volume differencing in space and an implicit Runge-Kutta method in time. Assuming two space dimensions, we introduce flux approximation for arbitrarily shaped convex quadrilaterals. On equidistant and variable sized rectangular grids we choose limited kappa = 1/3 related schemes to approximate the advective flux and the central difference scheme for the diffusive flux. On non-rectangular grids we recommend the VF9 scheme for the estimation of the diffusive flux. Our model exists as a code.
引用
收藏
页码:103 / 139
页数:37
相关论文
共 50 条
  • [1] A mathematical and numerical model for reactive fluid flow systems
    Astrid Holstad
    Computational Geosciences, 2000, 4 : 103 - 139
  • [2] A numerical model of coupled fluid flow and reactive geochemical transport
    Yeh, GT
    Fang, YL
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2002, 47 : 607 - 614
  • [3] Mathematical and numerical analysis of a three-dimensional fluid flow model in glaciology
    Rappaz, J
    Reist, A
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (01): : 37 - 52
  • [4] FLOW OF FLUID THROUGH WALL OF CAPILLARY SYSTEMS STUDIED BY A MATHEMATICAL MODEL
    HANTOS, Z
    LAZAR, Z
    ACTA PHYSIOLOGICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 38 (04): : 265 - &
  • [5] Mathematical model of fluid flow in nanochannels
    Indeitsev D.A.
    Abramyan A.K.
    Bessonov N.M.
    Mirantsev L.V.
    International Journal of Nanomechanics Science and Technology, 2010, 1 (02): : 151 - 168
  • [6] The mathematical model of compressible fluid flow
    Leonavičiene, T.
    Pileckas, K.
    Mathematical Modelling and Analysis, 2002, 7 (01) : 117 - 126
  • [7] Mathematical and numerical modelling of fluid flow in elastic tubes
    Baensch, E.
    Goncharova, O.
    Koop, A.
    Kroener, D.
    COMPUTATIONAL SCIENCE AND HIGH PERFORMANCE COMPUTING III, 2008, 101 : 102 - +
  • [8] Mathematical model and numerical calculation for viscoelastic fluid flow through fractal porous media
    Tian, Zipeng
    Zhang, Bin
    Cui, Haiqing
    Zhang, Shuyun
    Shiyou Xuebao/Acta Petrolei Sinica, 2014, 35 (01): : 118 - 122
  • [9] Numerical Simulation of Reactive Fluid Flow on Unstructured Meshes
    Sarah Jane Fowler
    Georg Kosakowski
    Thomas Driesner
    Dmitrii A. Kulik
    Thomas Wagner
    Stefan Wilhelm
    Olivier Masset
    Transport in Porous Media, 2016, 112 : 283 - 312
  • [10] Numerical Simulation of Reactive Fluid Flow on Unstructured Meshes
    Fowler, Sarah Jane
    Kosakowski, Georg
    Driesner, Thomas
    Kulik, Dmitrii A.
    Wagner, Thomas
    Wilhelm, Stefan
    Masset, Olivier
    TRANSPORT IN POROUS MEDIA, 2016, 112 (01) : 283 - 312