Accuracy Improvement in DOA Estimation with Deep Learning

被引:6
|
作者
Kase, Yuya [1 ]
Nishimura, Toshihiko [1 ]
Ohgane, Takeo [1 ]
Ogawa, Yasutaka [1 ]
Sato, Takanori [1 ]
Kishiyama, Yoshihisa [2 ]
机构
[1] Hokkaido Univ, Fac Informat Sci & Technol, Grad Sch, Sapporo, Hokkaido 0600814, Japan
[2] NTT DOCOMO INC, Res Labs, Yokosuka, Kanagawa 2398536, Japan
关键词
DOA estimation; deep learning; machine learning;
D O I
10.1587/transcom.2021EBT0001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Direction of arrival (DOA) estimation of wireless signals is demanded in many applications. In addition to classical methods such as MUSIC and ESPRIT, non-linear algorithms such as compressed sensing have become common subjects of study recently. Deep learning or machine learning is also known as a non-linear algorithm and has been applied in various fields. Generally, DOA estimation using deep learning is classified as on-grid estimation. A major problem of on-grid estimation is that the accuracy may be degraded when the DOA is near the boundary. To reduce such estimation errors, we propose a method of combining two DNNs whose grids are offset by one half of the grid size. Simulation results show that our proposal outperforms MUSIC which is a typical off-grid estimation method. Furthermore, it is shown that the DNN specially trained for a close DOA case achieves very high accuracy for that case compared with MUSIC.
引用
收藏
页码:588 / 599
页数:12
相关论文
共 50 条
  • [1] DOA Estimation of Two Targets with Deep Learning
    Kase, Yuya
    Nishimura, Toshihiko
    Ohgane, Takeo
    Ogawa, Yasutaka
    Kitayama, Daisuke
    Kishiyama, Yoshihisa
    2018 15TH WORKSHOP ON POSITIONING, NAVIGATION AND COMMUNICATIONS (WPNC), 2018,
  • [2] Deep Learning-Based DOA Estimation
    Zheng, Shilian
    Yang, Zhuang
    Shen, Weiguo
    Zhang, Luxin
    Zhu, Jiawei
    Zhao, Zhijin
    Yang, Xiaoniu
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (03) : 819 - 835
  • [3] Deep Learning Based Broadband DOA Estimation
    Ma, Yi
    Zhang, Jinfeng
    Chu, Ping
    Liao, Bin
    2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2021,
  • [4] Fundamental Trial on DOA Estimation with Deep Learning
    Kase, Yuya
    Nishimura, Toshihiko
    Ohgane, Takeo
    Ogawa, Yasutaka
    Kitayama, Daisuke
    Kishiyama, Yoshihisa
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2020, E103B (10) : 1127 - 1135
  • [5] Improvement of DOA Estimation Accuracy by Using Sub-arrays
    Fujimoto, Mitoshi
    Ohaka, Shohei
    Hori, Toshikazu
    2010 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM, 2010,
  • [6] Deep Learning for DOA Estimation Using a Vector Hydrophone
    Cao, Huaigang
    Wang, Wenbo
    Ni, Haiyan
    Ren, Qunyan
    Ma, Li
    OCEANS 2019 MTS/IEEE SEATTLE, 2019,
  • [7] MD-DOA: A Model-Based Deep Learning DOA Estimation Architecture
    Xu, Xiaoxuan
    Huang, Qinghua
    IEEE SENSORS JOURNAL, 2024, 24 (12) : 20240 - 20253
  • [8] Strategies for DOA-DNN Estimation Accuracy Improvement at Low and High SNRs
    Ando, Daniel Akira
    Nishimura, Toshihiko
    Sato, Takanori
    Ohgane, Takeo
    Ogawa, Yasutaka
    Hagiwara, Junichiro
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2025, E108B (01) : 94 - 108
  • [9] Enhancing Underwater DOA Estimation Accuracy With Limited Datasets Using Task-Restructured Deep Mutual Learning
    Zhang, Qinzheng
    Wang, Haiyan
    Shen, Xiaohong
    Yan, Yongsheng
    Zhao, Zhongda
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 966 - 970
  • [10] On the DOA Estimation Performance of Optimum Arrays Based on Deep Learning
    Wandale, Steven
    Ichige, Koichi
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,