Prediction and estimation consistency of sparse multi-class penalized optimal scoring

被引:5
|
作者
Gaynanova, Irina [1 ]
机构
[1] Texas A&M Univ, Dept Stat, MS 3143, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
classification; high-dimensional regression; lasso; linear discriminant analysis; ORACLE INEQUALITIES; DISCRIMINANT-ANALYSIS; VARIABLE SELECTION; MODEL SELECTION; REGRESSION; RECOVERY;
D O I
10.3150/19-BEJ1126
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse linear discriminant analysis via penalized optimal scoring is a successful tool for classification in high-dimensional settings. While the variable selection consistency of sparse optimal scoring has been established, the corresponding prediction and estimation consistency results have been lacking. We bridge this gap by providing probabilistic bounds on out-of-sample prediction error and estimation error of multi-class penalized optimal scoring allowing for diverging number of classes.
引用
收藏
页码:286 / 322
页数:37
相关论文
共 50 条
  • [1] Prediction and estimation consistency of sparse multi-class penalized optimal scoring (vol 26, pg 286, 2020)
    Gaynanova, Irina
    BERNOULLI, 2022, 28 (01) : 601 - 605
  • [2] Learning Optimal Fair Scoring Systems for Multi-Class Classification
    Rouzot, Julien
    Ferry, Julien
    Huguet, Marie-Jose
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 197 - 204
  • [3] Development of sparse Bayesian multinomial generalized linear model for multi-class prediction
    Madahian, Behrouz
    Deng, Lih Y.
    Homayouni, Ramin
    BMC BIOINFORMATICS, 2014, 15
  • [4] Development of sparse Bayesian multinomial generalized linear model for multi-class prediction
    Behrouz Madahian
    Lih Y Deng
    Ramin Homayouni
    BMC Bioinformatics, 15 (Suppl 10)
  • [5] Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS
    Aguilera-Morillo, M. Carmen
    Aguilera, Ana M.
    STATISTICAL MODELLING, 2020, 20 (06) : 592 - 616
  • [6] Multi-class classification of biomechanical data: A functional LDA approach based on multi-class penalized functional PLS
    Carmen Aguilera-Morillo, M.
    Aguilera, Ana M.
    STATISTICAL MODELLING, 2019,
  • [7] Development of sparse Bayesian multinomial generalized linear model for multi-class prediction
    Madahian, Behrouz
    Deng, Lih Y.
    Homayouni, Ramin
    BMC BIOINFORMATICS, 2014, 15
  • [8] Multi-Class H-Consistency Bounds
    Awasthi, Pranjal
    Mao, Anqi
    Mohri, Mehryar
    Zhong, Yutao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] A Sparse Multi-class Classifier for Biomarker Screening
    Liu, Tzu-Yu
    Wiesel, Ami
    Hero, Alfred O.
    2013 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2013, : 77 - 80
  • [10] Commodity dynamics: A sparse multi-class approach
    Barbaglia, Luca
    Wilms, Ines
    Croux, Christophe
    ENERGY ECONOMICS, 2016, 60 : 62 - 72