Higher preprojective algebras and stably Calabi-Yau properties

被引:5
|
作者
Amiot, Claire [1 ]
Oppermann, Steffen
机构
[1] Univ Grenoble 1, Inst Fourier, F-38402 St Martin Dheres, France
关键词
TRIANGULATED CATEGORIES; CLUSTER; QUIVERS;
D O I
10.4310/MRL.2014.v21.n4.a1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give sufficient properties for a finite-dimensional graded algebra to be a higher preprojective algebra. These properties are of homological nature, they use Gorensteiness and bimodule isomorphisms in the stable category of Cohen-Macaulay modules. We prove that these properties are also necessary for 3-preprojective algebras using [18] and for preprojective algebras of higher representation finite algebras using [5].
引用
收藏
页码:617 / 647
页数:31
相关论文
共 50 条
  • [1] Calabi-Yau structures for multiplicative preprojective algebras
    Bozec, Tristan
    Calaque, Damien
    Scherotzke, Sarah
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (03) : 783 - 810
  • [2] Stably Calabi-Yau algebras and skew group algebras
    Yu XiaoLan
    Lu DiMing
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1343 - 1356
  • [3] Stably Calabi-Yau algebras and skew group algebras
    YU XiaoLan & LU DiMing Department of Mathematics
    ScienceChina(Mathematics), 2011, 54 (07) : 1343 - 1356
  • [4] Stably Calabi-Yau algebras and skew group algebras
    XiaoLan Yu
    DiMing Lu
    Science China Mathematics, 2011, 54 : 1343 - 1356
  • [5] Almost Koszul algebras and stably Calabi-Yau algebras
    Yu, Xiaolan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 337 - 354
  • [6] Monomial Gorenstein algebras and the stably Calabi-Yau property
    Elsener, Ana Garcia
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (04) : 1083 - 1099
  • [7] Cluster-tilted algebras are Gorenstein and stably Calabi-Yau
    Keller, Bernhard
    Reiten, Idun
    ADVANCES IN MATHEMATICS, 2007, 211 (01) : 123 - 151
  • [8] Calabi-Yau algebras and superpotentials
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (02): : 555 - 603
  • [9] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [10] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815