Radial Basis Function Neural Networks for Datasets with Missing Values

被引:1
|
作者
Paiva Mesquita, Diego P. [1 ]
Gomes, Joao Paulo P. [1 ]
机构
[1] Univ Fed Ceara, Dept Comp Sci, Fortaleza, Ceara, Brazil
关键词
Neural networks; Missing data; RBF neural networks; DISTANCE ESTIMATION; LEARNING-MACHINE; REGRESSION;
D O I
10.1007/978-3-319-53480-0_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radial Basis Function Neural Networks (RBFNN) are among the most popular supervised learning methods and showed significant results in various applications. Despite is applicability, RBFNNs basic formulation can not handle datasets with missing attributes. Aiming to overcome this problem, in this work, the RBFNN is modified to deal with missing data. For that, the expected squared distance approach is used to compute the RBF Kernel. The proposed approach showed promising results when compared to standard missing data strategies.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 50 条
  • [1] Comparative study between radial basis probabilistic neural networks and radial basis function neural networks
    Zhao, WB
    Huang, DS
    Guo, L
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, 2003, 2690 : 389 - 396
  • [2] Cosine radial basis function neural networks
    Randolph-Gips, MM
    Karayiannis, NB
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 96 - 101
  • [3] Robust radial basis function neural networks
    Lee, CC
    Chung, PC
    Tsai, JR
    Chang, CI
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (06): : 674 - 685
  • [4] Genome-enabled prediction of genetic values using radial basis function neural networks
    Gonzalez-Camacho, J. M.
    de los Campos, G.
    Perez, P.
    Gianola, D.
    Cairns, J. E.
    Mahuku, G.
    Babu, R.
    Crossa, J.
    THEORETICAL AND APPLIED GENETICS, 2012, 125 (04) : 759 - 771
  • [5] Genome-enabled prediction of genetic values using radial basis function neural networks
    J. M. González-Camacho
    G. de los Campos
    P. Pérez
    D. Gianola
    J. E. Cairns
    G. Mahuku
    R. Babu
    J. Crossa
    Theoretical and Applied Genetics, 2012, 125 : 759 - 771
  • [6] Extreme Reformulated Radial Basis Function Neural Networks
    Bi, Gexin
    Dong, Fang
    SIXTH INTERNATIONAL SYMPOSIUM ON NEURAL NETWORKS (ISNN 2009), 2009, 56 : 101 - 110
  • [7] On simultaneous approximations by radial basis function neural networks
    Li, X
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 95 (01) : 75 - 89
  • [8] Kernel orthonormalization in radial basis function neural networks
    Kaminski, W
    Strumillo, P
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05): : 1177 - 1183
  • [9] Radial basis function neural networks: Theory and applications
    Strumillo, P
    Kaminski, W
    NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 107 - 119
  • [10] Robust Training of Radial Basis Function Neural Networks
    Kalina, Jan
    Vidnerova, Petra
    ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 113 - 124