QCD Topological Susceptibility from the Nonlocal Chiral Quark Model

被引:0
|
作者
Nam, Seung-Il [1 ,2 ]
Kao, Chung-Wen [3 ,4 ]
机构
[1] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
[2] APCTP, Pohang 37673, South Korea
[3] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Ctr High Energy Phys, Chungli 32023, Taiwan
关键词
QCD topological susceptibility; Topological charge-density operator; Nonlocal chiral-quark model; Bosonization; Liquid-instanton configuration; Large-N-c limit; Witten-Veneziano formula; Leutwyler-Smilga formula; SYMMETRY-BREAKING; INSTANTON VACUUM; U(1) PROBLEM; SPECTRUM; FLAVORS; MASS;
D O I
10.3938/jkps.70.1027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the quantum chromodynamics (QCD) topological susceptibility. by using the semi-bosonized nonlocal chiral-quark model (SB-NL(X)QM) for the leading large-N-c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass (m(u), (d), m(s)) approximate to (5, 135) MeV. To compute X, we derive the local topological charge-density operator Q(t) (x) from the effective action of SB-N(X)QM. We verify that the derived expression for X in our model satisfies the WittenVeneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with (p) over bar= 1/ 3 fm and (R) over bar = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain X = (167.67MeV)(4), which is comparable with the empirical value X = (175 +/- 5MeV) 4 whereas it turns out that.QL = (194.30MeV) 4 in the quenched limit. Thus, we conclude that the value of. will be reduced around 10 similar to 20% by the dynamical-quark contribution.
引用
收藏
页码:1027 / 1036
页数:10
相关论文
共 50 条
  • [1] QCD topological susceptibility from the nonlocal chiral quark model
    Seung-Il Nam
    Chung-Wen Kao
    Journal of the Korean Physical Society, 2017, 70 : 1027 - 1036
  • [2] Topological susceptibility in a nonlocal chiral quark model
    Dorokhov, AE
    PHYSICS OF PARTICLES AND NUCLEI, 2004, 35 : S110 - S113
  • [3] Quark mass effects on the topological susceptibility in QCD
    Bali, GS
    Eicker, N
    Lippert, T
    Neff, H
    Orth, B
    Schilling, K
    Struckmann, T
    Viehoff, J
    PHYSICAL REVIEW D, 2001, 64 (05):
  • [4] Chiral Lagrangian and chiral quark model from confinement in QCD
    Simonov, Yu A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (18):
  • [5] QCD phase diagram in nonlocal chiral quark models
    Dumm, DG
    STRONG AND ELECTROWEAK MATTER 2004, PROCEEDINGS, 2005, : 356 - 360
  • [6] The extended chiral quark model and QCD
    Andrianov, AA
    Espriu, D
    Tarrach, R
    NUCLEAR PHYSICS B, 1998, 533 (1-3) : 429 - 472
  • [7] ππ scattering in a nonlocal chiral quark model
    Osipov, A. A.
    Radzhabov, A. E.
    Volkov, M. K.
    PHYSICS OF ATOMIC NUCLEI, 2007, 70 (11) : 1931 - 1940
  • [8] ππ scattering in a nonlocal chiral quark model
    A. A. Osipov
    A. E. Radzhabov
    M. K. Volkov
    Physics of Atomic Nuclei, 2007, 70 : 1931 - 1940
  • [9] Chiral quark model with topological ghost
    Yang, S
    Lü, XF
    Zhao, EG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2000, 33 (02) : 173 - 176
  • [10] Chiral quark model with topological ghost
    Yang, S
    Lü, XF
    Zhao, EG
    NUCLEAR PHYSICS A, 2000, 675 (1-2) : 379C - 382C