Protonation enthalpies in fluorosulfonic acid using ab initio self-consistent reaction field theory

被引:0
|
作者
Harris, NJ
Ohwada, T
Lammertsma, K
机构
[1] Free Univ Amsterdam, Dept Chem, NL-1081 HV Amsterdam, Netherlands
[2] Univ Alabama, Dept Chem, Birmingham, AL 35294 USA
[3] Univ Tokyo, Dept Pharmaceut Sci, Bunkyo Ku, Tokyo 113, Japan
关键词
fluorosulfonic acid; protonation energies; solvation; acidities;
D O I
10.1002/(SICI)1096-987X(19980130)19:2<250::AID-JCC18>3.0.CO;2-L
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrostatic solvation free energies were computed for several small neutral bases and their conjugate acids using a continuum solvation model called the self-consistent isodensity polarizable continuum model (SCIPCM). The solvation energies were computed at the restricted Hartree-Fock (RHF) and second-order Moller-Plesset (MP2) levels of theory, as well as with the Becke3-Lee-Yang-Parr (B3LYP) density functional theory, using the standard 6-31G(**) Gaussian basis set. The RHF solvation energies are similar to those computed at the correlated MP2 and B3LYP theoretical levels. A model for computing protonation enthalpies for neutral bases in fluorosulfonic acid solvent leads to the equation Delta H-prot,H-HSO3F(B) = -PA(B) + Delta E-t(BH+) - Delta E-t(B) + beta, where PA(B) is the gas phase proton affinity for base B, Delta E-t(BH+) is the SCIPCM solvation energy for the conjugate acid, and Delta E-t(B) is the solvation energy for the base. A fit to experimental values of Delta H-prot,H- HSO3F(B) for 10 neutral bases (H2O, MeOH, Me2O, H2S, MeSH, Me2S, NH3, MeNH2, Me2NH, and PH3) gives beta = 238.4 +/- 2.9 kcal/mol when Delta Delta E-t is computed using the 0.0004 e.bohr(-3) isodensity surface for defining the solute cavity at the RHF/6-31G(**) level. The model predicts that for carbon monoxide Delta H-prot,H-HSO3F(CO) = 10 kcal/mol. Thus, protonation of CO is endothermic, and the conjugate acid HCO+ (formyl cation) behaves as a strong acid in fluorosulfonic acid. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:250 / 257
页数:8
相关论文
共 50 条
  • [1] Ab initio self-consistent laser theory and random lasers
    Tuereci, Hakan E.
    Stone, A. Douglas
    Ge, Li
    Rotter, Stefan
    Tandy, Robert J.
    NONLINEARITY, 2009, 22 (01) : C1 - C18
  • [2] Quantitative verification of ab initio self-consistent laser theory
    Ge, Li
    Tandy, Robert J.
    Stone, A. Douglas
    Tuereci, Hakan E.
    OPTICS EXPRESS, 2008, 16 (21) : 16895 - 16902
  • [3] Ab initio theory of surface segregation: Self-consistent determination of the concentration profile
    Drchal, V
    Kudrnovsky, J
    Pasturel, A
    Turek, I
    Weinberger, P
    PHYSICAL REVIEW B, 1996, 54 (11): : 8202 - 8212
  • [4] GENERAL AB-INITIO MOLECULAR MULTICONFIGURATION SELF-CONSISTENT FIELD ALGORITHM
    HACKMEYER, M
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1974, 8 (05) : 783 - 787
  • [5] Accurate ab initio density fitting for multiconfigurational self-consistent field methods
    Aquilante, Francesco
    Pedersen, Thomas Bondo
    Lindh, Roland
    Roos, Bjoern Olof
    De Meras, Alfredo Sanchez
    Koch, Henrik
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (02):
  • [6] The self-consistent ab initio lattice dynamical method
    Souvatzis, P.
    Eriksson, O.
    Katsnelson, M. I.
    Rudin, S. P.
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (03) : 888 - 894
  • [7] Ab initio self-consistent many-body theory of polarons at all couplings
    Lafuente-Bartolome, Jon
    Lian, Chao
    Sio, Weng Hong
    Gurtubay, Idoia G.
    Eiguren, Asier
    Giustino, Feliciano
    PHYSICAL REVIEW B, 2022, 106 (07)
  • [8] SELF-CONSISTENT REACTION FIELD-THEORY OF SOLVENT EFFECTS
    TAPIA, O
    GOSCINSKI, O
    MOLECULAR PHYSICS, 1975, 29 (06) : 1653 - 1661
  • [9] ACETYLCHOLINE, GAUCHE OR TRANSQUESTIONABLE STANDARD AB-INITIO SELF-CONSISTENT FIELD INVESTIGATION
    PORT, GNJ
    PULLMAN, A
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (12) : 4059 - 4060
  • [10] AB-INITIO SELF-CONSISTENT FIELD AND CONFIGURATION INTERACTION STUDY OF BERYLLIUM BOROHYDRIDE
    MARYNICK, DS
    LIPSCOMB, WN
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1973, 95 (22) : 7244 - 7250