A coarse-grained deep neural network model for liquid water
被引:14
|
作者:
Patra, Tarak K.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Patra, Tarak K.
[1
]
Loeffler, Troy D.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Loeffler, Troy D.
[1
]
Chan, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Chan, Henry
[1
]
Cherukara, Mathew J.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Cherukara, Mathew J.
[1
]
Narayanan, Badri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louisville, Dept Mech Engn, Louisville, KY 40202 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Narayanan, Badri
[2
]
Sankaranarayanan, Subramanian K. R. S.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Sankaranarayanan, Subramanian K. R. S.
[1
,3
]
机构:
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Louisville, Dept Mech Engn, Louisville, KY 40202 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
We introduce a coarse-grained deep neural network (CG-DNN) model for liquid water that utilizes 50 rotational and translational invariant coordinates and is trained exclusively against energies of similar to 30 000 bulk water configurations. Our CG-DNN potential accurately predicts both the energies and the molecular forces of water, within 0.9 meV/molecule and 54 meV/angstrom of a reference (coarse-grained bond-order potential) model. The CG-DNN water model also provides good prediction of several structural, thermodynamic, and temperature dependent properties of liquid water, with values close to those obtained from the reference model. More importantly, CG-DNN captures the well-known density anomaly of liquid water observed in experiments. Our work lays the groundwork for a scheme where existing empirical water models can be utilized to develop a fully flexible neural network framework that can subsequently be trained against sparse data from high-fidelity albeit expensive beyond-DFT calculations.
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Loeffler, Troy D.
Patra, Tarak K.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Indian Inst Technol Madras, Dept Chem Engn, Chennai 600036, TN, IndiaArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Patra, Tarak K.
Chan, Henry
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Chan, Henry
Sankaranarayanan, Subramanian K. R. S.
论文数: 0引用数: 0
h-index: 0
机构:
Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USAArgonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
机构:
Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
Los Alamos Natl Lab, CNLS, Los Alamos, NM USAWeizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel