Dirichlet process HMM mixture models with application to music analysis

被引:0
|
作者
Qi, Yuting [1 ]
Paisley, John William [1 ]
Carin, Lawrence [1 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
Dirichlet process; HMM mixture; music; variational Bayes;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
A hidden Markov mixture model is developed using a Dirichlet process (DP) prior, to represent the statistics of sequential data for which a single hidden Markov model (HMM) may not be sufficient. The DP prior has an intrinsic clustering property that encourages parameter sharing, naturally revealing the proper number of mixture components. The evaluation of posterior distributions for all model parameters is achieved via a variational Bayes formulation. We focus on exploring music similarities as an important application, highlighting the effectiveness of the HMM mixture model. Experimental results are presented from classical music clips.
引用
收藏
页码:465 / +
页数:2
相关论文
共 50 条
  • [1] Estimating mixture of Dirichlet process models
    MacEachern, SN
    Muller, P
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (02) : 223 - 238
  • [2] Deep Dirichlet Process Mixture Models
    Li, Naiqi
    Li, Wenjie
    Jiang, Yong
    Xia, Shu-Tao
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 1138 - 1147
  • [3] Dirichlet process mixture models for the analysis of repeated attempt designs
    Daniels, Michael J.
    Lee, Minji
    Feng, Wei
    BIOMETRICS, 2023, 79 (04) : 3907 - 3915
  • [4] Probabilistic weighted Dirichlet process mixture with an application to stochastic volatility models
    Sun, Peng
    Kim, Inyoung
    Lee, Ki-Ahm
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [5] Dirichlet process mixture models with shrinkage prior
    Ding, Dawei
    Karabatsos, George
    STAT, 2021, 10 (01):
  • [6] Distributed Inference for Dirichlet Process Mixture Models
    Ge, Hong
    Chen, Yutian
    Wan, Moquan
    Ghahramani, Zoubin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 2276 - 2284
  • [7] DIRICHLET PROCESS MIXTURE MODELS WITH MULTIPLE MODALITIES
    Paisley, John
    Carin, Lawrence
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1613 - 1616
  • [8] Background Subtraction with Dirichlet Process Mixture Models
    Haines, Tom S. F.
    Xiang, Tao
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 670 - 683
  • [9] FETAL HEART RATE ANALYSIS BY HIERARCHICAL DIRICHLET PROCESS MIXTURE MODELS
    Yu, Kezi
    Quirk, J. Gerald
    Djuric, Petar M.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 709 - 713
  • [10] Collapsed Variational Dirichlet Process Mixture Models
    Kurihara, Kenichi
    Welling, Max
    Teh, Yee Whye
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2796 - 2801