Effect of carbon coating process on the structure and electrochemical performance of LiNi0.5Mn0.5O2 used as cathode in Li-ion batteries

被引:19
|
作者
Hashem, Ahmed M. [1 ]
Ghany, Ashraf E. Abdel [1 ]
Nikolowski, Kristian [2 ]
Ehrenberg, Helmut [2 ]
机构
[1] Natl Res Ctr, Dept Inorgan Chem, Cairo, Egypt
[2] IFW Dresden, Inst Complex Mat, D-01069 Dresden, Germany
关键词
LiNi0.5Mn0.5O2; Li-ion batteries; Carbon coating; SECONDARY BATTERIES; AL; COPRECIPITATION; LINI1/2MN1/2O2; BEHAVIOR; CHARGE; TI;
D O I
10.1007/s11581-009-0403-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiNi0.5Mn0.5O2 powder was synthesized by a coprecipitation method. LiOH.H2O and coprecipitated [(Ni0.5Mn0.5)C2O4] precursors were mixed carefully together and then calcined at 900A degrees C. Surface modified cathode materials were obtained by coating LiNi0.5Mn0.5O2 with a thin layer of amorphous carbon using table sugar and starch as carbon source. Both parent and carbon-coated samples have the characteristic layered structure of LiNi0.5Mn0.5O2 as estimated from X-ray diffractometry measurements. Transmission electron microscope showed the presence of C layer around the prepared particles. TGA analysis emphasized and confirmed the presence of C coating around LiNi0.5Mn0.5O2. It is obvious that the carbon coating appears to be beneficial for the electrochemical performance of the LiNi0.5Mn0.5O2. A capacity of about 150 mAh/g is delivered in the voltage range 2.5-4.5 V at current density C/15 for carbon coated LiNi0.5Mn0.5O2 in comparison with about 165 mAh/g obtained for carbon free LiNi0.5Mn0.5O2 at the same current density and voltage window. About 92% and 82% capacity retention was obtained at 50th cycle for coated LiNi0.5Mn0.5O2 using sucrose and starch, respectively; whereas, 75% was retained after only 30th cycle for carbon free LiNi0.5Mn0.5O2. This improvement is mainly attributed to the presence of thin layer of carbon layer that encapsulate the nanoparticles and improve the conductivity and the electrochemical performance of LiNi0.5Mn0.5O2.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 50 条
  • [1] Effect of carbon coating process on the structure and electrochemical performance of LiNi0.5Mn0.5O2 used as cathode in Li-ion batteries
    Ahmed M. Hashem
    Ashraf E. Abdel Ghany
    Kristian Nikolowski
    Helmut Ehrenberg
    Ionics, 2010, 16 : 305 - 310
  • [2] Synthesis and Electrochemical Properties of Hexagonal Sliced LiNi0.5Mn0.5O2 as Cathode Materials for Li-ion Batteries
    Dou, Shumei
    Li, Qing
    ASIAN JOURNAL OF CHEMISTRY, 2014, 26 (09) : 2632 - 2636
  • [3] Li de-intercalation mechanism in LiNi0.5Mn0.5O2 cathode material for Li-ion batteries
    Arachi, Y
    Kobayashi, H
    Emura, S
    Nakata, Y
    Tanaka, M
    Asai, T
    Sakaebe, H
    Tatsumi, K
    Kageyama, H
    SOLID STATE IONICS, 2005, 176 (9-10) : 895 - 903
  • [4] Structural,magnetic and electrochemical properties of LiNi0.5Mn0.5O2 as positive electrode for Li-ion batteries
    Abdel-Ghany, A.
    Zaghib, K.
    Gendron, F.
    Mauger, A.
    Julien, C. M.
    ELECTROCHIMICA ACTA, 2007, 52 (12) : 4092 - 4100
  • [5] Synthesis Routes on Electrochemical Behavior of Co-Free Layered LiNi0.5Mn0.5O2 Cathode for Li-Ion Batteries
    Tsai, Shu-Yi
    Fung, Kuan-Zong
    MOLECULES, 2023, 28 (02):
  • [6] LiNi0.5Mn0.5O2 hierarchical nanorods as high-capacity cathode materials for Li-ion batteries
    Yang, Jingang
    Guo, Biao
    He, Hong
    Li, Yuan
    Song, Chunlin
    Liu, Gang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 714 - 718
  • [7] Effect of Mg Dopant on the Electrochemical Performance of LiNi0.5Mn0.5O2 Cathode Materials for Lithium Rechargeable Batteries
    Nithya, C.
    Lakshmi, R.
    Gopukumar, S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) : A1335 - A1340
  • [8] Effect of ultrasonic irradiation on the structure and electrochemical properties of cathode material LiNi0.5Mn0.5O2 for lithium batteries
    Zhang, Bin
    Chen, Gang
    Xu, Ping
    Lv, Zushun
    SOLID STATE IONICS, 2007, 178 (19-20) : 1230 - 1234
  • [9] In situ XAFS study of LiNi0.5Mn0.5O2 cathode for Li rechargeable batteries
    Nakano, H
    Nonaka, T
    Okuda, C
    Ukyo, Y
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2003, 111 (01) : 33 - 36
  • [10] Preparation and Electrochemical Performances of LiNi0.5Mn0.5O2 Cathode Materials for Lithium-Ion Batteries
    Shi, Lei
    Xie, Wenting
    Ge, Qisheng
    Wang, Sen
    Chen, Da
    Qin, Laishun
    Fan, Meiqiang
    Bai, Liqun
    Chen, Zhi
    Shen, Hangyan
    Tian, Guanglei
    Lv, Chunju
    Shu, Kangying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2015, 10 (06): : 4696 - 4705