IMPROVED L-ISOMAP FOR CLASSIFICATION OF HYPERSPECTRAL IMAGERY VIA VECTOR QUANTIZATION

被引:0
|
作者
Sun, Weiwei [1 ]
Liu, Chun [1 ]
Shi, Beiqi [1 ]
Li, Weiyue [1 ]
机构
[1] Tongji Univ, Dept Surveying & Geoinformat, Shanghai 200092, Peoples R China
来源
2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS) | 2012年
关键词
L-Isomap; landmark selection; Vector Quantization; Hyperspectral image; Dimension reduction;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Landmark-Isometric mapping (L-Isomap) has greatly reduced the computational complexity of Isomap with the idea of landmarks. However, due to the irregular distribution of pixel points in spectral space, the usual random selected landmarks perform not well in hyperspectral image data. To solve the problem, Vector Quantization (VQ) has been introduced to improve the landmark selection. With two classifiers, the classification results of manifold coordinates from L-Isomap with VQ landmarks are compared with that of random landmarks. The results show that VQ landmarks could improve much the classification result in each class from random landmarks, and larger number of landmarks will lead to higher classification accuracy.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] UL-Isomap based nonlinear dimensionality reduction for hyperspectral imagery classification
    Sun, Weiwei
    Halevy, Avner
    Benedetto, John J.
    Czaja, Wojciech
    Liu, Chun
    Wu, Hangbin
    Shi, Beiqi
    Li, Weiyue
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 89 : 25 - 36
  • [2] Informative vector machine classification for hyperspectral imagery
    Tan, Xiong
    Yu, Xuchu
    Qin, Zhiyuan
    Zhang, Pengqiang
    Wei, Xiangpo
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2015, 44 (11): : 1227 - 1234
  • [3] Novel multivariate vector quantization for effective compression of hyperspectral imagery
    Li, Xiaohui
    Ren, Jinchang
    Zhao, Chunhui
    Qiao, Tong
    Marshall, Stephen
    OPTICS COMMUNICATIONS, 2014, 332 : 192 - 200
  • [4] Hyperspectral Imagery Classification Based on Probabilistic Classification Vector Machines
    Xue, Zhixiang
    Yu, Xuchu
    Fu, Qiongying
    Wei, Xiangpo
    Liu, Bing
    EIGHTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2016), 2016, 10033
  • [5] Import Vector Machine Based Hyperspectral Imagery Classification
    Wei, Xiangpo
    Yu, Xuchu
    Zhang, Pengqiang
    Yu, Anzhu
    Li, Runsheng
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 107 : 861 - 866
  • [6] Research on relevance vector machine for hyperspectral imagery classification
    Yang, Guopeng
    Yu, Xuchu
    Zhou, Xin
    Zhang, Pengqiang
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2010, 39 (06): : 572 - 578
  • [7] The Vector Quantization for AVIRIS Hyperspectral Imagery Compression with Fixed Low Bitrate
    Zhang, Jing
    Li, Yunsong
    Wang, Keyan
    Liu, Haiying
    SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VIII, 2012, 8514
  • [8] Hyperspectral Imagery Classification via Stochastic HHSVMs
    Liu, Weiwei
    Shen, Xiaobo
    Du, Bo
    Tsang, Ivor W.
    Zhang, Wenjie
    Lin, Xuemin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (02) : 577 - 588
  • [9] Fuzzy learning vector quantization for hyperspectral coastal vegetation classification
    Filippi, AM
    Jensen, JR
    REMOTE SENSING OF ENVIRONMENT, 2006, 100 (04) : 512 - 530
  • [10] DATA DEPENDENT ADAPTATION FOR IMPROVED CLASSIFICATION OF HYPERSPECTRAL IMAGERY
    Prasad, Saurabh
    Kalluri, Hemanth
    Bruce, Lori M.
    Samiappan, Sathishkumar
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 68 - 71