Empirical Bayes Deconvolution Based Modulation Discovery Under Additive Noise

被引:1
|
作者
Dulek, Berkan [1 ]
机构
[1] Hacettepe Univ, Dept Elect & Elect Engn, Beytepe Campus, TR-06800 Ankara, Turkey
关键词
Modulation dictionary; empirical Bayes; parametric modeling; deconvolution; CLASSIFICATION; CUMULANTS;
D O I
10.1109/TVT.2018.2800111
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of identifying digital amplitude-phase modulations under additive noise is addressed within the theory of empirical Bayes deconvolution. The presented methods employ parametric models in the observation and signal constellation spaces. The model parameters are estimated using the received samples and then substituted into the respective models to obtain the estimate for the signal constellation, from which the decoding of the received samples can he accomplished. The proposed framework can he used to construct a modulation dictionary for an unknown transmitter prior to employing any hypothesis testing-based classification algorithm.
引用
收藏
页码:6668 / 6672
页数:5
相关论文
共 50 条
  • [1] Empirical Bayes deconvolution estimates
    Efron, Bradley
    BIOMETRIKA, 2016, 103 (01) : 1 - 20
  • [2] Modulation Discovery Over Arbitrary Additive Noise Channels Based on the Richardson-Lucy Algorithm
    Dulek, Berkan
    Ozdemir, Onur
    Varshney, Pramod K.
    Su, Wei
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (06) : 756 - 760
  • [3] Bayes and empirical Bayes semi-blind deconvolution using eigenfunctions of a prior covariance
    Pillonetto, Gianluigi
    Bell, Bradley M.
    AUTOMATICA, 2007, 43 (10) : 1698 - 1712
  • [4] Empirical Bayes approach to Truth Discovery problems
    Ben Shabat, Tsviel
    Meir, Reshef
    Azriel, David
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 150 - 158
  • [5] An Empirical Bayes Optimal Discovery Procedure Based on Semiparametric Hierarchical Mixture Models
    Noma, Hisashi
    Matsui, Shigeyuki
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2013, 2013
  • [6] Empirical Bayes estimation for additive hazards regression models
    Sinha, Debajyoti
    McHenry, M. Brent
    Lipsitz, Stuart R.
    Ghosh, Malay
    BIOMETRIKA, 2009, 96 (03) : 545 - 558
  • [7] deconvolveR: A G-Modeling Program for Deconvolution and Empirical Bayes Estimation
    Narasimhan, Balasubramanian
    Efron, Bradley
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (11): : 1 - 20
  • [8] An Empirical Bayes Approach to Controlling the False Discovery Exceedance
    Basu, Pallavi
    Fu, Luella
    Saretto, Alessio
    Sun, Wenguang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (03) : 1041 - 1052
  • [9] Empirical Bayes methods and false discovery rates for microarrays
    Efron, B
    Tibshirani, R
    GENETIC EPIDEMIOLOGY, 2002, 23 (01) : 70 - 86
  • [10] BAYES AND EMPIRICAL BAYES ESTIMATION OF SURVIVAL FUNCTION UNDER PROGRESSIVE CENSORING
    TIWARI, RC
    JAMMALAMADAKA, SR
    ZALKIKAR, JN
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1988, 17 (10) : 3591 - 3606