Electrochemical energy storage devices working in extreme conditions

被引:222
|
作者
Chen, Mingzhe [1 ]
Zhang, Yanyan [2 ]
Xing, Guichuan [1 ]
Chou, Shu-Lei [3 ]
Tang, Yuxin [2 ]
机构
[1] Univ Macau, Inst Appl Phys & Mat Engn, Macau, Peoples R China
[2] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
[3] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; IN-SALT ELECTROLYTE; SHEAR THICKENING ELECTROLYTES; NITROGEN-DOPED CARBON; SODIUM-ION; HIGH-VOLTAGE; HYDROGEN EVOLUTION; CATHODE MATERIAL; HIGH-POWER; NA-ION;
D O I
10.1039/d1ee00271f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The energy storage system (ESS) revolution has led to next-generation personal electronics, electric vehicles/hybrid electric vehicles, and stationary storage. With the rapid application of advanced ESSs, the uses of ESSs are becoming broader, not only in normal conditions, but also under extreme conditions (high/low-temperatures, high stretching/compression conditions, etc.), bringing new challenges in the energy storage field. To break the electrochemical constraints of ESSs under normal conditions, it is urgent to explore new approaches/concepts to address the critical challenges for ESSs working under extreme conditions via mechanistic understanding of new electrochemical reactions and phenomena in diverse scenarios. In this review, we first summarize the key scientific points (such as electrochemical thermodynamics and kinetics, and mechanical design) for electrochemical ESSs under extreme conditions, along with the scientific directions to maintain satisfactory performance. Then, we have covered the main obstacles to the utilization of existing ESSs under extreme conditions, and summarized the corresponding solutions to overcome them, as well as effective strategies to improve their electrochemical performance. Finally, we highlight existing critical barriers and the corresponding strategies needed for advancing ESSs under extreme conditions.
引用
收藏
页码:3323 / 3351
页数:29
相关论文
共 50 条
  • [1] Electrochemical energy storage devices
    Shukla, A.K.
    Prem Kumar, T.
    Proceedings of the Indian National Science Academy, 2015, 81 (04): : 891 - 902
  • [2] Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures
    Li, Fuyun
    Hu, Xianluo
    BATTERIES & SUPERCAPS, 2021, 4 (03) : 389 - 406
  • [3] Electrochemical Nanowire Devices for Energy Storage
    Mai, Liqiang
    Wei, Qiulong
    Tian, Xiaocong
    Zhao, Yunlong
    An, Qinyou
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2014, 13 (01) : 10 - 15
  • [4] Stretchable electrochemical energy storage devices
    Mackanic, David G.
    Chang, Ting-Hsiang
    Huang, Zhuojun
    Cui, Yi
    Bao, Zhenan
    CHEMICAL SOCIETY REVIEWS, 2020, 49 (13) : 4466 - 4495
  • [5] Graphdiyne for Electrochemical Energy Storage Devices
    Shen Xiangyan
    He Jianjiang
    Wang Ning
    Huang Changshui
    ACTA PHYSICO-CHIMICA SINICA, 2018, 34 (09) : 1029 - 1047
  • [6] Integration of Energy Harvesting and Electrochemical Storage Devices
    Zhong, Yu
    Xia, Xinhui
    Mai, Wenjie
    Tu, Jiangping
    Fan, Hongjin
    ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (12):
  • [7] Electrochemical Energy Storage Devices in Pulsed Power
    Wetz, David Alan
    Novak, Peter M.
    Shrestha, Biju
    Heinzel, John
    Donahue, Simon T.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 3034 - 3042
  • [8] The smart era of electrochemical energy storage devices
    Shan, Xu-Yi
    Li, Feng
    Wang, Da-Wei
    Cheng, Hui-Ming
    ENERGY STORAGE MATERIALS, 2016, 3 (03) : 66 - 68
  • [9] On the challenge of large energy storage by electrochemical devices
    Maddukuri, Satyanarayana
    Malka, David
    Chae, Munseok S.
    Elias, Yuval
    Luski, Shalom
    Aurbach, Doron
    ELECTROCHIMICA ACTA, 2020, 354
  • [10] Nanowire Electrodes for Electrochemical Energy Storage Devices
    Mai, Liqiang
    Tian, Xiaocong
    Xu, Xu
    Chang, Liang
    Xu, Lin
    CHEMICAL REVIEWS, 2014, 114 (23) : 11828 - 11862