Pairwise Latent Semantic Association for Similarity Computation in Medical Imaging

被引:13
|
作者
Zhang, Fan [1 ,2 ]
Song, Yang [3 ]
Cai, Weidong [2 ]
Liu, Sidong [3 ]
Liu, Siqi [2 ]
Pujol, Sonia [2 ]
Kikinis, Ron [2 ]
Xia, Yong [4 ]
Fulham, Michael J. [5 ,6 ]
Feng, David Dagan [7 ,8 ]
机构
[1] Univ Sydney, Sch Informat Technol, Biomed & Multimedia Informat Technol Res Grp, Sydney, NSW 2006, Australia
[2] Harvard Univ, Sch Med, Brigham & Womens Hosp, Surg Planning Lab, Cambridge, MA 02115 USA
[3] Univ Sydney, Sch Informat Technol, Biomed & BMIT Res Grp, Sydney, NSW 2006, Australia
[4] Northwestern Polytech Univ, Sch Comp Sci & Technol, Shaanxi Key Lab Speech & Image Informat Proc, Xian, Peoples R China
[5] Royal Prince Alfred Hosp, Dept PET & Nucl Med, Camperdown, NSW, Australia
[6] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia
[7] Univ Sydney, Sch Informat Technol, BMIT Res Grp, Sydney, NSW 2006, Australia
[8] Shanghai Jiao Tong Univ, Med Res Inst X, Shanghai 200030, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Latent topic; medical image retrieval; semantic association; LIVER-LESIONS; RETRIEVAL; CLASSIFICATION; BRAIN; APPROXIMATION; MORPHOMETRY; ENSEMBLE; FEATURES; IMAGES; BAG;
D O I
10.1109/TBME.2015.2478028
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Retrieving medical images that present similar diseases is an active research area for diagnostics and therapy. However, it can be problematic given the visual variations between anatomical structures. In this paper, we propose a new feature extraction method for similarity computation in medical imaging. Instead of the low-level visual appearance, we design a CCA-PairLDA feature representation method to capture the similarity between images with high-level semantics. First, we extract the PairLDA topics to represent an image as a mixture of latent semantic topics in an image pair context. Second, we generate a CCA-correlation model to represent the semantic association between an image pair for similarity computation. While PairLDA adjusts the latent topics for all image pairs, CCA-correlation helps to associate an individual image pair. In this way, the semantic descriptions of an image pair are closely correlated, and naturally correspond to similarity computation between images. We evaluated our method on two public medical imaging datasets for image retrieval and showed improved performance.
引用
收藏
页码:1058 / 1069
页数:12
相关论文
共 50 条
  • [1] Enhanced Latent Semantic Indexing Using Cosine Similarity Measures for Medical Application
    Al-Anzi, Fawaz
    AbuZeina, Dia
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (05) : 742 - 749
  • [2] A Personalized Association Rule Ranking Method Based on Semantic Similarity And Evolutionary Computation
    Yang, Guangfei
    Shimada, Kaoru
    Mabu, Shingo
    Hirasawa, Kotaro
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 487 - 494
  • [3] Algorithmic Computation and Approximation of Semantic Similarity
    Ana G. Maguitman
    Filippo Menczer
    Fulya Erdinc
    Heather Roinestad
    Alessandro Vespignani
    World Wide Web, 2006, 9 : 431 - 456
  • [4] Semantic Based Text Similarity Computation
    Liu, Yaqi
    Li, Zhijiang
    ADVANCED GRAPHIC COMMUNICATIONS AND MEDIA TECHNOLOGIES, 2017, 417 : 343 - 348
  • [5] Algorithmic computation and approximation of semantic similarity
    Maguitman, Ana G.
    Menczer, Filippo
    Erdinc, Fulya
    Roinestad, Heather
    Vespignani, Alessandro
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2006, 9 (04): : 431 - 456
  • [6] Measuring Semantic Similarity by Latent Relational Analysis
    Turney, Peter D.
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1136 - 1141
  • [7] Deep Contextualized Pairwise Semantic Similarity for Arabic Language Questions
    Al-Bataineh, Hesham
    Farhan, Wael
    Mustafa, Ahmad
    Seelawi, Haitham
    Al-Natsheh, Hussein T.
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1586 - 1591
  • [8] Semantic similarity relations and computation in schema integration
    Song, William Wei
    Johannesson, Paul
    Bubenko Jr., Janis A.
    Data and Knowledge Engineering, 1996, 19 (01): : 65 - 97
  • [9] A unified framework for semantic similarity computation of concepts
    Yuncheng Jiang
    Multimedia Tools and Applications, 2021, 80 : 32335 - 32378
  • [10] A unified framework for semantic similarity computation of concepts
    Jiang, Yuncheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 32335 - 32378