Oxygen vacancy engineering of BiOBr/HNb3O8 Z-scheme hybrid photocatalyst for boosting photocatalytic conversion of CO2

被引:52
|
作者
Zhou, Changjian [1 ]
Shi, Xiangli [1 ]
Li, Di [1 ]
Song, Qi [2 ]
Zhou, Yimeng [2 ]
Jiang, Deli [2 ]
Shi, Weidong [2 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Jiangsu, Peoples R China
关键词
Photocatalytic CO2 reduction; BiOBr/HNb3O8; Oxygen vacancy; Interfacial interaction; Z-scheme mechanism; CHARGE SEPARATION; REDUCTION; HETEROJUNCTION; CHALLENGES; MODULATION; NANOSHEET; HNB3O8;
D O I
10.1016/j.jcis.2021.04.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photo-chemical conversion of CO2 into solar fuels by photocatalysts is a promising and sustainable strategy in response to the ever-increasing environmental problems and imminent energy crisis. However, it is unavoidably impeded by the insufficient active site, undesirable inert charge transfer and fast recombination of photogenerated charge carriers on semiconductor photocatalysts. In this work, all these challenges are overcome by construction of a novel defect-engineered Z-scheme hybrid photocatalyst, which is comprised of three-dimensional (3D) BiOBr nanoflowers assembled by nanosheets with abundant oxygen vacancies (BiOBr-V-O) and two-dimensional (2D) HNb3O8 nanosheets (HNb3O8 NS). The special 3D-2D architecture structure is beneficial to preventing photocatalyst stacking and providing more active sites, and the introduced oxygen vacancies not only broaden the light absorption range but also enhance the electrical conductivity. More importantly, the constructed Z-scheme photocatalytic system could accelerate the charge carriers transfer and separation. As a result, the optimal BiOBr-V-O/HNb3O8 NS (50%-BiOBr-V-O/HNb3O8 NS) shows a high CO production yield of 164.6 mu mol.g(-1) with the selectivity achieves to 98.7% in a mild gassolid system using water as electron donors. Moreover, the BiOBr-V-O/HNb3O8 NS photocatalyst keeps high photocatalytic activity after five cycles under the identical experimental conditions, demonstrating its excellent long-termdurability. Thiswork provided an original strategy to design a newhybrid structure photocatalyst involved V(O)s, thus guiding a new way to further enhance CO2 reduction activity of photocatalyst. (C) 2021 Published by Elsevier Inc.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 50 条
  • [1] Photocatalytic reduction of CO2 to methane over HNb3O8 nanobelts
    Li, Xiukai
    Pan, Huiqi
    Li, Wei
    Zhuang, Zongjin
    APPLIED CATALYSIS A-GENERAL, 2012, 413 : 103 - 108
  • [2] Synergistic Effects in Nanoengineered HNb3O8/Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO2 into Renewable Fuels
    Liu, He
    Zhang, Haitao
    Shen, Peng
    Chen, Feixiong
    Zhang, Suojiang
    LANGMUIR, 2016, 32 (01) : 254 - 264
  • [3] Z-scheme (BiO)2CO3|Cu2O photocatalyst for highly selective CO2 to CO conversion
    Marimuthu, Thandapani
    Perumal, Sakthivel
    Lim, Taewaen
    Seo, Junhyeok
    APPLIED SURFACE SCIENCE, 2025, 687
  • [4] Up-conversion effect boosted the photocatalytic CO2 reduction activity of Z-scheme CPDs/BiOBr heterojunction
    Xie, Jing
    Zhang, Xiaojing
    Lu, Zhenjiang
    Hu, Jindou
    Hao, Aize
    Feng, Yue
    Cao, Yali
    INORGANIC CHEMISTRY FRONTIERS, 2023, 10 (17) : 5127 - 5135
  • [5] Constructing BiOBr/g-C3N4/Bi2O2CO3 Z-scheme photocatalyst with enhanced photocatalytic activity
    Biao Zhang
    Yu Liu
    Kanghong Zhou
    Hongyu Zhu
    Dongxu Gu
    Wei Ge
    Ying Gan
    Jianyuan Hao
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 20539 - 20547
  • [6] In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
    Miao, Zerui
    Wang, Qingli
    Zhang, Yanfeng
    Meng, Lingpeng
    Wang, Xuxu
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
  • [7] Constructing BiOBr/g-C3N4/Bi2O2CO3 Z-scheme photocatalyst with enhanced photocatalytic activity
    Zhang, Biao
    Liu, Yu
    Zhou, Kanghong
    Zhu, Hongyu
    Gu, Dongxu
    Ge, Wei
    Gan, Ying
    Hao, Jianyuan
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (15) : 20539 - 20547
  • [8] In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O
    Miao, Zerui
    Wang, Qingli
    Zhang, Yanfeng
    Meng, Lingpeng
    Wang, Xuxu
    Applied Catalysis B: Environmental, 2022, 301
  • [9] A Z-scheme inorganic intergrowth bulk heterojunction to achieve photostimulated oxygen vacancy regeneration for photocatalytic CO2 reduction
    Li, Yuexian
    Zou, Wei
    Wang, Xiaoyan
    Lu, Jun
    Liu, Weiwei
    Wei, Shuo
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (03) : 2131 - 2142
  • [10] Modulate 1O2 by passivate oxygen vacancy to boosting the photocatalytic performance of Z-scheme Mo2S3/BiOCl heterostructure
    Xia, Huan
    Qin, Hailan
    Zhang, Yushan
    Yin, Hang
    Li, Qiang
    Pan, Fei
    Xia, Dongsheng
    Li, Dongya
    Xu, Haiming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 266