Weighted Lp decay for solutions of the Navier-Stokes equations

被引:32
|
作者
Kukavica, Igor [1 ]
Torres, J. J. [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equation; space decay; strong solutions; time decay;
D O I
10.1080/03605300600781659
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider bounded strong solutions of the incompressible Navier-Stokes equations in n dimensions, where n >= 2, with potential forcing. Assuming that the initial datum is well localized, and assuming that a solution u satisfies \\u\\L-2 = O(t(-gamma 0)) for some gamma(0) >= 0, we prove that \\ \x\(a)\u\ \\(Lp) = O(t(-gamma 0+a/2+(n/2)(1/p-1/2))) for all p is an element of [2, infinity) and for all a is an element of [0, n/p') where p' = p/(p - 1).
引用
收藏
页码:819 / 831
页数:13
相关论文
共 50 条