Compactness of the 0-Neumann problem on domains with bounded intrinsic geometry

被引:6
|
作者
Zimmer, Andrew [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
-Neumann problem; Kahler metrics; Bounded geometry; Convex domains; RIEMANN SURFACES; CONVEX DOMAINS; MODULI SPACE; PSEUDOCONVEX DOMAINS; INVARIANT METRICS; CANONICAL METRICS; NEUMANN OPERATOR; BERGMAN; COHOMOLOGY; REGULARITY;
D O I
10.1016/j.jfa.2021.108992
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By considering intrinsic geometric conditions, we introduce a new class of domains in complex Euclidean space. This class is invariant under biholomorphism and includes strongly pseudoconvex domains, finite type domains in dimension two, convex domains, C -convex domains, and homogeneous domains. For this class of domains, we show that compactness of the a-Neumann operator on (0, q) -forms is equivalent to the boundary not containing any q-dimensional analytic varieties (assuming only that the boundary is a topological submanifold). We also prove, for this class of domains, that the Bergman metric is equivalent to the Kobayashi metric and that the pluricomplex Green function satisfies certain local estimates in terms of the Bergman metric. 0 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:47
相关论文
共 50 条