Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries

被引:456
|
作者
Song, Jiangxuan [1 ]
Yu, Zhaoxin [1 ]
Gordin, Mikhail L. [1 ]
Hu, Shi [1 ]
Yi, Ran [1 ]
Tang, Duihai [1 ]
Walter, Timothy [1 ]
Regula, Michael [1 ]
Choi, Daiwon [2 ]
Li, Xiaolin [2 ]
Maniyannan, Ayyakkannu [3 ]
Wang, Donghai [1 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Pacific NW Natl Lab, Dept Stationary Energy Storage, Richland, WA 99354 USA
[3] US DOE, Mat Performance Div, Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Phosphorus; graphene nanosheets; chemical bonding sodium-ion battery; solid electrolyte interphase (sei); ENERGY-STORAGE; REVERSIBLE CAPACITY; LOW-COST; GRAPHENE; COMPOSITE; NANOPARTICLES; CHALLENGES; ELECTRODES; NANOSHEETS; PARTICLES;
D O I
10.1021/nl502759z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Room temperature sodium-ion batteries are of great interest for high-energy-density energy storage systems because of low-cost and natural abundance of sodium. Here, we report a novel phosphorus/graphene nanosheet hybrid as a high performance anode for sodium-ion batteries through facile ball milling of red phosphorus and graphene stacks. The graphene stacks are mechanically exfoliated to nanosheets that chemically bond with the surfaces of phosphorus particles. This chemical bonding can facilitate robust and intimate contact between phosphorus and graphene nanosheets, and the graphene at the particle surfaces can help maintain electrical contact and stabilize the solid electrolyte interphase upon the large volume change of phosphorus during cycling. As a result, the phosphorus/graphene nanosheet hybrid nanostructured anode delivers a high reversible capacity of 2077 mAh/g with excellent cycling stability (1700 mAh/g after 60 cycles) and high Coulombic efficiency (>98%). This simple synthesis approach and unique nanostructure can potentially be applied to other phosphorus-based alloy anode materials for sodium-ion batteries.
引用
收藏
页码:6329 / 6335
页数:7
相关论文
共 50 条
  • [1] A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries
    Hu, Lingyun
    Zhu, Xiaoshu
    Du, Yichen
    Li, Yafei
    Zhou, Xiaosi
    Bao, Jianchun
    CHEMISTRY OF MATERIALS, 2015, 27 (23) : 8138 - 8145
  • [2] Covalently bonded black phosphorus and reduced graphene oxide as a high-performance anode for sodium-ion batteries
    Yu, Seong-Bo
    Susanto, Dieky
    Chang, Eun Seo
    Shin, Hyeung-Keun
    Jeon, Young Gyu
    Hwang, Sang Yeop
    Lee, Seung-Hwan
    Kim, Kwang-Bum
    Kim, Hyun-Kyung
    JOURNAL OF ENERGY STORAGE, 2024, 92
  • [3] Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High-Performance Anode for Sodium-Ion Batteries
    Pei, Longkai
    Zhao, Qing
    Chen, Chengcheng
    Liang, Jing
    Chen, Jun
    CHEMELECTROCHEM, 2015, 2 (11): : 1652 - 1655
  • [4] A Reduced Graphene Oxide/Disodium Terephthalate Hybrid as a High-Performance Anode for Sodium-Ion Batteries
    Cao, Tengfei
    Lv, Wei
    Zhang, Si-Wei
    Zhang, Jun
    Lin, Qiaowei
    Chen, Xiangrong
    He, Yanbing
    Kang, Fei-Yu
    Yang, Quan-Hong
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (65) : 16586 - 16592
  • [5] Phosphorus: An Anode of Choice for Sodium-Ion Batteries
    Ni, Jiangfeng
    Li, Liang
    Lu, Jun
    ACS ENERGY LETTERS, 2018, 3 (05): : 1137 - 1144
  • [6] A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries
    Jie Sun
    Hyun-Wook Lee
    Mauro Pasta
    Hongtao Yuan
    Guangyuan Zheng
    Yongming Sun
    Yuzhang Li
    Yi Cui
    Nature Nanotechnology, 2015, 10 : 980 - 985
  • [7] Partially Reduced Holey Graphene Oxide as High Performance Anode for Sodium-Ion Batteries
    Zhao, Jin
    Zhang, Yi-Zhou
    Zhang, Fan
    Liang, Hanfeng
    Ming, Fangwang
    Alshareef, Husam N.
    Gao, Zhiqiang
    ADVANCED ENERGY MATERIALS, 2019, 9 (07)
  • [8] Graphene-Based Phosphorus-Doped Carbon as Anode Material for High-Performance Sodium-Ion Batteries
    Ma, Guangyao
    Xiang, Zehua
    Huang, Kangsheng
    Ju, Zhicheng
    Zhuang, Quanchao
    Cui, Yanhua
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2017, 34 (05)
  • [9] Organic sodium terephthalate@graphene hybrid anode materials for sodium-ion batteries
    Wang, Ying
    Kretschmer, Katja
    Zhang, Jinqiang
    Mondal, Anjon Kumar
    Guo, Xin
    Wang, Guoxiu
    RSC ADVANCES, 2016, 6 (62): : S7098 - S7102
  • [10] A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
    Sun, Jie
    Lee, Hyun-Wook
    Pasta, Mauro
    Yuan, Hongtao
    Zheng, Guangyuan
    Sun, Yongming
    Li, Yuzhang
    Cui, Yi
    NATURE NANOTECHNOLOGY, 2015, 10 (11) : 980 - U184