Simulated digestion and fermentation in vitro by human gut microbiota of intra- and extra-cellular polysaccharides from Aspergillus cristatus

被引:49
|
作者
Rui, Ying [1 ]
Wan, Peng [1 ]
Chen, Guijie [1 ]
Xie, Minhao [1 ]
Sun, Yi [1 ]
Zeng, Xiaoxiong [1 ]
Liu, Zhonghua [2 ,3 ]
机构
[1] Nanjing Agr Univ, Coll Food Sci & Technol, Nanjing 210095, Jiangsu, Peoples R China
[2] Hunan Agr Univ, Minist Educ Tea Sci, Key Lab, Changsha 410128, Hunan, Peoples R China
[3] Natl Res Ctr Engn Technol Utilizat Bot Funct Ingr, Changsha 410128, Hunan, Peoples R China
关键词
Aspergillus cristatus; Intra- and extra-cellular polysaccharides; Simulated digestion and fermentation; Gut microbiota; Short-chain fatty acids; STRUCTURAL CHARACTERISTICS; PREBIOTIC PROPERTIES; IDENTIFICATION; SALIVA; SEEDS;
D O I
10.1016/j.lwt.2019.108508
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Fuzhuan brick tea is characterized in unique "golden flower" of Aspergillus cristatus. However, little information is available for infra- and extra-cellular polysaccharides from A. cristatus (IPS and EPS, respectively). Therefore, simulated digestion and fermentation in vitro were carried out to investigate whether IPS and EPS could be broken down in digestive system. Furthermore, their interactions with gut microbiota were investigated. It was found that IPS and EPS were utilized by gut microbiota to metabolize into short-chain fatty acids (SCFAs). The contents of total acids (SCFAs and lactic acid) in IPS and EPS groups increased to 39.30 +/- 0.66 and 45.18 +/- 1.68 mmol/L, respectively. IPS and EPS could obviously modulate the composition of gut microbiota. Thereinto, IPS could maintain the growth of OTU26 and OTU69 (Prevotella) and increase the relative levels of OTU30, OTU31, OTU35 and OTU56 (Bacteroides), whereas, EPS could maintain the growth of OTU26 and OTU48 (Prevotella) and increase the relative levels of OTU35, OTU56 and OTU63 (Bacteroides). OTU26, OTU61 and OTU69 (Prevotella) showed significantly positive correlations with propionic acid, OTU48 (Prevotella) and OTU56 (Bacteroides) showed significantly positive correlations with acetic acid. Hence, IPS and EPS could regulate the composition of gut microbiota, thereby promote production of SCFAs.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera
    Wang, Yidan
    Chen, Guijie
    Peng, Yujia
    Rui, Ying
    Zeng, Xiaoxiong
    Ye, Hong
    LWT-FOOD SCIENCE AND TECHNOLOGY, 2019, 100 (167-174) : 167 - 174
  • [2] Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Helicteres angustifolia L
    Chen, Ligen
    Liu, Junwei
    Ge, Xiaodong
    Xu, Wei
    Chen, Yun
    Li, Fengwei
    Cheng, Delin
    Shao, Rong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 141 : 1065 - 1071
  • [3] Simulated Digestion and Fermentation in Vitro by Human Gut Microbiota of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry
    Zhou, Wangting
    Yan, Yamei
    Mi, Jia
    Zhang, Hongcheng
    Lu, Lu
    Luo, Qing
    Li, Xiaoying
    Zeng, Xiaoxiong
    Cao, Youlong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (04) : 898 - 907
  • [4] In vitro simulated digestion and fermentation behaviors of polysaccharides from Pleurotus cornucopiae and their impact on the gut microbiota
    Jiang, Chunping
    Li, Hongyu
    Li, Junqi
    Zou, Guangying
    Li, Cheng
    Fang, Zhengfeng
    Hu, Bin
    Wu, Wenjuan
    Li, Xiaolin
    Zeng, Zhen
    Luo, Qingying
    Liu, Yuntao
    FOOD & FUNCTION, 2024, 15 (19) : 10051 - 10066
  • [5] Simulated gastrointestinal digestion and gut microbiota fermentation of polysaccharides from Agaricus bisporus
    Fu, Chujing
    Ye, Kai
    Ma, Sai
    Du, Hengjun
    Chen, Shiguo
    Liu, Donghong
    Ma, Gaoxing
    Xiao, Hang
    FOOD CHEMISTRY, 2023, 418
  • [6] In vitro digestion and human gut microbiota fermentation of Bletilla striata polysaccharides and oligosaccharides
    Wang, Qiqi
    Chen, Huimin
    Yin, Mingzhu
    Cheng, Xue
    Xia, Hui
    Hu, Haiming
    Zheng, Junping
    Zhang, Zhigang
    Liu, Hongtao
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2023, 13
  • [7] In Vitro Digestion and Fecal Fermentation of Polysaccharides from Hawthorn and Its Impacts on Human Gut Microbiota
    Zhou, Kaixuan
    Zhou, Qian
    Han, Xue
    Gao, Zhe
    Peng, Ruyan
    Lin, Xuan
    Cheng, Xinlong
    Zhao, Wen
    PROCESSES, 2022, 10 (10)
  • [8] Comprehensive assessment of Hypsizygus marmoreus polysaccharides through simulated digestion and gut microbiota fermentation in vitro
    Ye, Kai
    Fu, Chujing
    Ma, Sai
    Du, Hengjun
    Chen, Shiguo
    Liu, Donghong
    Ma, Gaoxing
    Xiao, Hang
    FOOD HYDROCOLLOIDS, 2023, 144
  • [9] Simulated digestion and gut microbiota fermentation of polysaccharides from Lactarius hatsudake Tanaka mushroom
    Yang, Qiao
    Chang, Songlin
    Tian, Yiming
    Zhang, Hui
    Zhu, Yuxing
    Li, Wang
    Ren, Jiali
    FOOD CHEMISTRY, 2025, 466
  • [10] Simulated Digestion and Fermentation In Vitro by Obese Human Gut Microbiota of Sulforaphane from Broccoli Seeds
    Sun, Yifei
    Tang, Zhaocheng
    Hao, Tingting
    Qiu, Zeyu
    Zhang, Baolong
    FOODS, 2022, 11 (24)