The first Hubble diagram and cosmological constraints using superluminous supernovae

被引:19
|
作者
Inserra, C. [1 ]
Sullivan, M. [2 ]
Angus, C. R. [3 ]
Macaulay, E. [4 ]
Nichol, R. C. [5 ]
Smith, M. [2 ,6 ]
Frohmaier, C. [5 ]
Gutierrez, C. P. [2 ,7 ,8 ]
Vicenzi, M. [5 ]
Moller, A. [9 ]
Brout, D. [10 ]
Brown, P. J. [11 ,12 ]
Davis, T. M. [13 ]
D'Andrea, C. B. [10 ]
Galbany, L. [14 ]
Kessler, R. [15 ,16 ]
Kim, A. G. [17 ]
Pan, Y-C [18 ]
Pursiainen, M. [2 ]
Scolnic, D. [16 ]
Thomas, B. P. [5 ]
Wiseman, P. [2 ]
Abbott, T. M. C. [19 ]
Annis, J. [20 ]
Avila, S. [21 ]
Bertin, E. [22 ,23 ]
Brooks, D. [24 ]
Burke, D. L. [25 ,26 ]
Carnero Rosell, A. [27 ,28 ]
Kind, M. Carrasco [29 ,30 ]
Carretero, J. [31 ]
Castander, F. J. [32 ,33 ]
Cawthon, R. [34 ]
Desai, S. [35 ]
Diehl, H. T. [20 ]
Eifler, T. F. [36 ,37 ]
Finley, D. A. [20 ]
Flaugher, B. [20 ]
Fosalba, P. [32 ,33 ]
Frieman, J. [16 ,20 ]
Garcia-Bellido, J. [21 ]
Gaztanaga, E. [32 ,33 ]
Gerdes, D. W. [38 ,39 ]
Giannantonio, T. [40 ,41 ]
Gruen, D. [25 ,26 ,42 ]
Gruendl, R. A. [29 ,30 ]
Gschwend, J. [28 ,43 ]
Gutierrez, G. [20 ]
Hollowood, D. L. [44 ]
Honscheid, K. [45 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, Wales
[2] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[3] Univ Copenhagen, Niels Bohr Inst, DARK, Lyngbyvej 2, DK-2100 Copenhagen O, Denmark
[4] Univ North Georgia, Dept Phys & Astron, Dahlonega, GA 30597 USA
[5] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England
[6] Univ Lyon 1, Inst Phys Deux Infinis, CNRS IN2P3, F-69622 Villeurbanne, France
[7] Univ Turku, Finnish Ctr Astron, ESO FINCA, FI-20014 Turku, Finland
[8] Univ Turku, Dept Phys & Astron, Tuorla Observ, FI-20014 Turku, Finland
[9] Univ Clermont Auvergne, LPC, CNRS IN2P3, F-63000 Clermont Ferrand, France
[10] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[11] Texas A&M Univ, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA
[12] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[13] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[14] Univ Granada, Dept Fis Teor & Cosmos, E-18071 Granada, Spain
[15] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA
[16] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[17] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[18] Natl Astron Observ Japan, Div Sci, 2-21-1 Osawa, Mitaka, Tokyo 1818588, Japan
[19] Natl Opt Astron Observ, Cerro Tololo Interamer Observ, Casilla 603, La Serena, Chile
[20] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[21] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, E-28049 Madrid, Spain
[22] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France
[23] Sorbonne Univ, Inst Astrophys Paris, UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France
[24] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[25] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, POB 2450, Stanford, CA 94305 USA
[26] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[27] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid 28040, Spain
[28] Lab Interinst E Astron LIneA, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil
[29] Univ Illinois, Dept Astron, 1002 W Green St, Urbana, IL 61801 USA
[30] Natl Ctr Supercomp Applicat, 1205 West Clark St, Urbana, IL 61801 USA
[31] Barcelona Inst Sci & Technol, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Bellaterra, Barcelona, Spain
[32] Inst Estudis Espacials Catalunya IEEC, E-08034 Barcelona, Spain
[33] CSIC, Inst Space Sci ICE, Campus UAB S-N,Carrer Can Magrans S-N, E-08193 Barcelona, Spain
[34] Univ Wisconsin, Phys Dept, 2320 Chamberlin Hall,1150 Univ Ave, Madison, WI 53706 USA
[35] IIT Hyderabad, Dept Phys, Kandi 502285, Telangana, India
[36] Univ Arizona, Dept Astron, Steward Observ, 933 North Cherry Ave, Tucson, AZ 85721 USA
[37] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[38] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA
[39] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[40] Univ Cambridge, Inst Astron, Madingley Rd, Cambridge CB3 0HA, England
[41] Univ Cambridge, Kavli Inst Cosmol, Madingley Rd, Cambridge CB3 0HA, England
[42] Stanford Univ, Dept Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA
[43] Observ Nacl, Rua Gal Jose Cristino 77, BR-20921400 Rio De Janeiro, RJ, Brazil
[44] Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA
[45] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA
[46] ASTRAVEO LLC, POB 1668, Gloucester, MA 01931 USA
[47] Macquarie Univ, Australian Astron Opt, N Ryde, NSW 2113, Australia
[48] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[49] Univ Sao Paulo, Inst Fis, Dept Fis Matemat, CP 66318, BR-05314970 Sao Paulo, SP, Brazil
[50] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain
关键词
transients: supernovae; cosmology: dark matter; cosmology: cosmological parameters; BARYON ACOUSTIC-OSCILLATIONS; LIGHT-CURVE SAMPLE; GAMMA-RAY BURSTS; IA SUPERNOVAE; HOST-GALAXY; INFRARED-EMISSION; IC SUPERNOVAE; TRANSIENT; SPECTRA; PAN-STARRS1;
D O I
10.1093/mnras/stab978
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints on the matter density, Omega(M), and the dark energy equation-of-state parameter, w(equivalent to p/rho). We build a sample of 20 cosmologically useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak-decline SLSN I standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN model based on the above standardization via minimization of the chi(2) computed from a covariance matrix that includes statistical and systematic uncertainties. For a spatially flat Lambda cold dark matter (Lambda CDM) cosmological model, we find , with an rms of 0.27 mag for the residuals of the distance moduli. For a w(0)w(a)CDM cosmological model, the addition of SLSNe I to a 'baseline' measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement in the constraints of w(0) and w(a) of 4 per cent. We present simulations of future surveys with 868 and 492 SLSNe I (depending on the configuration used) and show that such a sample can deliver cosmological constraints in a flat Lambda CDM model with the same precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of 2-3 improvement in the precision of the constraints on the time variation of dark energy, w(0) and w(a). This paper represents the proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology in the high-redshift (z > 1) universe.
引用
收藏
页码:2535 / 2549
页数:15
相关论文
共 50 条
  • [1] Toward a cosmological Hubble diagram for Type II-P supernovae
    Nugent, Peter
    Sullivan, Mark
    Ellis, Richard
    Gal-Yam, Avishay
    Leonard, Douglas C.
    Howell, D. Andrew
    Astier, Pierre
    Carlberg, Raymond G.
    Conley, Alex
    Fabbro, Sebastien
    Fouchez, Dominique
    Neill, James D.
    Pain, Reynald
    Perrett, Kathy
    Pritchet, Chris J.
    Regnault, Nicolas
    ASTROPHYSICAL JOURNAL, 2006, 645 (02): : 841 - 850
  • [2] Forecast of cosmological constraints with superluminous supernovae from the Chinese Space Station Telescope
    Jia, Xuan-Dong
    Hu, Jian-Ping
    Wang, Fa-Yin
    Dai, Zi-Gao
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (10)
  • [3] Forecast of cosmological constraints with superluminous supernovae from the Chinese Space Station Telescope
    XuanDong Jia
    JianPing Hu
    FaYin Wang
    ZiGao Dai
    ScienceChina(Physics,Mechanics&Astronomy), 2024, (10) : 132 - 142
  • [4] Cosmological constraints from the Hubble diagram of quasars at high redshifts
    G. Risaliti
    E. Lusso
    Nature Astronomy, 2019, 3 : 272 - 277
  • [5] Cosmological constraints from the Hubble diagram of quasars at high redshifts
    Risaliti, G.
    Lusso, E.
    NATURE ASTRONOMY, 2019, 3 (03) : 272 - 277
  • [6] A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae
    Angus, C. R.
    Levan, A. J.
    Perley, D. A.
    Tanvir, N. R.
    Lyman, J. D.
    Stanway, E. R.
    Fruchter, A. S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 458 (01) : 84 - 104
  • [7] First stars, hypernovae, and superluminous supernovae
    Nomoto, Ken'ichi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (10):
  • [8] Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers
    Li, Zhengxiang
    Gonzalez, J. E.
    Yu, Hongwei
    Zhu, Zong-Hong
    Alcaniz, J. S.
    PHYSICAL REVIEW D, 2016, 93 (04)
  • [9] Cosmological test with the QSO Hubble diagram
    Lopez-Corredoira, M.
    Melia, F.
    Lusso, E.
    Risaliti, G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2016, 25 (05):
  • [10] A HUBBLE DIAGRAM OF DISTANT TYPE IA SUPERNOVAE
    HAMUY, M
    PHILLIPS, MM
    MAZA, J
    SUNTZEFF, NB
    SCHOMMER, RA
    AVILES, R
    ASTRONOMICAL JOURNAL, 1995, 109 (01): : 1 - 13