Laplace transform homotopy perturbation method for the approximation of variational problems

被引:10
|
作者
Filobello-Nino, U. [1 ]
Vazquez-Leal, H. [1 ]
Rashidi, M. M. [2 ,3 ]
Sedighi, Hamid M. [4 ]
Perez-Sesma, A. [1 ]
Sandoval-Hernandez, M. [5 ]
Sarmiento-Reyes, A. [6 ]
Contreras-Hernandez, A. D. [1 ]
Pereyra-Diaz, D. [1 ]
Hoyos-Reyes, C. [1 ]
Jimenez-Fernandez, V. M. [1 ]
Huerta-Chua, J. [7 ]
Castro-Gonzalez, F. [1 ]
Laguna-Camacho, J. R. [8 ]
机构
[1] Univ Veracruzana, Fac Instrumentac Elect, Circuito Gonzalo Aguirre Beltran S-N, Xalapa 91000, Veracruz, Mexico
[2] Tongji Univ, Shanghai Key Lab Vehicle Aerodynam & Vehicle Ther, 4800 Cao An Rd, Shanghai 201804, Peoples R China
[3] ENN Tongji Clean Energy Inst Adv Studies, Shanghai, Peoples R China
[4] Shahid Chamran Univ, Dept Mech Engn, Ahvaz, Iran
[5] Univ Xalapa, Ciencia Cultura & Tecnol, Km 2 Carretera Xalapa Veracruz, Xalapa 91190, Veracruz, Mexico
[6] Natl Inst Astrophys Opt & Elect, Luis Enrique Erro 1, Puebla 72840, Mexico
[7] Univ Veracruzana, Fac Ingn Elect & Comunicac, Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
[8] Univ Veracruzana, Fac Ingn Mecan Elect, Venustiano Carranza S-N, Poza Rica 93390, Veracruz, Mexico
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Homotopy perturbation method; Nonlinear differential equation; Approximate solutions; Laplace transform; Laplace transform homotopy perturbation method; Variational calculus; Euler equation; HEAT-TRANSFER; EQUATIONS; FLOW;
D O I
10.1186/s40064-016-1755-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Laplace transform-homotopy perturbation method with arbitrary initial approximation and residual error cancelation
    Filobello-Nino, U.
    Vazquez-Leal, H.
    Sarmiento-Reyes, A.
    Cervantes-Perez, J.
    Perez-Sesma, A.
    Jimenez-Fernandez, V. M.
    Pereyra-Diaz, D.
    Huerta-Chua, J.
    Morales-Mendoza, L. J.
    Gonzalez-Lee, M.
    Castro-Gonzalez, F.
    APPLIED MATHEMATICAL MODELLING, 2017, 41 : 180 - 194
  • [2] Application of He's homotopy perturbation method for Laplace transform
    Abbasbandy, S.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1206 - 1212
  • [3] Nonlinearities distribution Laplace transform-homotopy perturbation method
    Filobello-Nino, Uriel
    Vazquez-Leal, Hector
    Benhammouda, Brahim
    Hernandez-Martinez, Luis
    Hoyos-Reyes, Claudio
    Agustin Perez-Sesma, Jose Antonio
    Manuel Jimenez-Fernandez, Victor
    Pereyra-Diaz, Domitilo
    Marin-Hernandez, Antonio
    Diaz-Sanchez, Alejandro
    Huerta-Chua, Jesus
    Cervantes-Perez, Juan
    SPRINGERPLUS, 2014, 3 : 1 - 13
  • [4] Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation method
    Gupta, Sumit
    Kumar, Devendra
    Singh, Jagdev
    ALEXANDRIA ENGINEERING JOURNAL, 2015, 54 (03) : 645 - 651
  • [5] Solving variational problems by homotopy-perturbation method
    Abdulaziz, O.
    Hashim, I.
    Chowdhury, M. S. H.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (06) : 709 - 721
  • [6] On the coupling of the homotopy perturbation method and Laplace transformation
    Madani, Mohammad
    Fathizadeh, Mahdi
    Khan, Yasir
    Yildirim, Ahmet
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1937 - 1945
  • [7] The combined Laplace transformation and homotopy perturbation method
    Ayati, Zainab
    AKADEMEIA, 2014, 4 (01):
  • [8] LAPLACE TRANSFORM AND HOMOTOPY PERTURBATION METHODS FOR SOLVING THE PSEUDOHYPERBOLIC INTEGRODIFFERENTIAL PROBLEMS WITH PURELY INTEGRAL CONDITIONS
    Necib, A.
    Merad, A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2020, 44 (02): : 251 - 272
  • [9] Solving The Optimal Control Problems Using Homotopy Perturbation Transform Method
    Alipour, M.
    Soltanian, F.
    Vahidi, J.
    Ghasempour, S.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 : 25 - 38
  • [10] Laplace transform-homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals
    Filobello-Nino, U.
    Vazquez-Leal, H.
    Khan, Y.
    Perez-Sesma, A.
    Diaz-Sanchez, A.
    Jimenez-Fernandez, V. M.
    Herrera-May, A.
    Pereyra-Diaz, D.
    Mendez-Perez, J. M.
    Sanchez-Orea, J.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (01): : 1 - 16