Classification of parametrically constrained bifurcations

被引:4
|
作者
Wu, Zhi-qiang [1 ,2 ,3 ]
Ding, Ran [1 ]
Chen, Yu-shu [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Dept Mech, Tianjin 300072, Peoples R China
[2] Tianjin Key Lab Nonlinear Dynam & Chaos Control, Tianjin 300072, Peoples R China
[3] State Key Lab Engines, Tianjin 310002, Peoples R China
基金
中国国家自然科学基金;
关键词
constrained bifurcation; parametric constraint; transition sets; classification of bifurcation;
D O I
10.1007/s10483-010-0201-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If the constraint boundary relates to a bifurcation parameter, a bifurcation is said to be parametrically constrained. Relying upon some substitution, a parametrically constrained bifurcation is transformed to an unconstrained bifurcation about new variables. A general form of transition sets of the parametrically constrained bifurcation is derived. The result indicates that only the constrained bifurcation set is influenced by parametric constraints, while other transition sets are the same as those of the corresponding nonparametrically constrained bifurcation. Taking parametrically constrained pitchfork bifurcation problems as examples, effects of parametric constraints on bifurcation classification are discussed.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [1] Classification of parametrically constrained bifurcations
    吴志强
    丁然
    陈予恕
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (02) : 135 - 142
  • [2] Classification of parametrically constrained bifurcations
    Zhi-qiang Wu
    Ran Ding
    Yu-shu Chen
    Applied Mathematics and Mechanics, 2010, 31 : 135 - 142
  • [3] Forecasting bifurcations in parametrically excited systems
    Shiyang Chen
    Bogdan Epureanu
    Nonlinear Dynamics, 2018, 91 : 443 - 457
  • [4] Forecasting bifurcations in parametrically excited systems
    Chen, Shiyang
    Epureanu, Bogdan
    NONLINEAR DYNAMICS, 2018, 91 (01) : 443 - 457
  • [5] Bifurcations in a parametrically forced magnetic pendulum
    Kim, Sang-Yoon
    Shin, Seung-Ho
    Yi, Jaichul
    Jang, Chi-Woong
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997, 56 (06):
  • [7] Bifurcations in a parametrically forced magnetic pendulum
    Kim, SY
    Shin, SH
    Yi, J
    Jang, CW
    PHYSICAL REVIEW E, 1997, 56 (06): : 6613 - 6619
  • [8] PREDICTION OF BIFURCATIONS IN A PARAMETRICALLY EXCITED DUFFING OSCILLATOR
    SANCHEZ, NE
    NAYFEH, AH
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1990, 25 (2-3) : 163 - 176
  • [9] Symmetry breaking bifurcations of a parametrically excited pendulum
    Mann, B. P.
    Koplow, M. A.
    NONLINEAR DYNAMICS, 2006, 46 (04) : 427 - 437
  • [10] Bifurcations of a parametrically excited oscillator with strong nonlinearity
    Tang, JS
    Fu, WB
    Li, KA
    CHINESE PHYSICS, 2002, 11 (10): : 1004 - 1007