Existence of Solutions to the Second Boundary-Value Problem for the p-Laplacian on Riemannian Manifolds

被引:0
|
作者
Brovkin, V. V. [1 ]
Kon'kov, A. A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
p-Laplacian; Riemannian manifold; Dirichlet integral; SOLVABILITY; DIMENSION;
D O I
10.1134/S0001434621010211
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain necessary and sufficient conditions for the existence of solutions to the boundary-value problem Delta(p)u = f on M, vertical bar del u vertical bar(p-2) partial derivative u/partial derivative v vertical bar(partial derivative m) = h, where p > 1 is a real number, M is a connected oriented complete Riemannian manifold with boundary, and nu is the outer normal vector to partial derivative M.
引用
收藏
页码:171 / 183
页数:13
相关论文
共 50 条
  • [1] On the Existence of Solutions of the Dirichlet Problem for the p-Laplacian on Riemannian Manifolds
    Bakiev, S. M.
    Kon'kov, A. A.
    MATHEMATICAL NOTES, 2023, 114 (5-6) : 679 - 686
  • [2] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    I. Merzoug
    A. Guezane-Lakoud
    R. Khaldi
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1099 - 1106
  • [3] Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem
    Merzoug, I.
    Guezane-Lakoud, A.
    Khaldi, R.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1099 - 1106
  • [4] GLOBAL CONTINUUM AND MULTIPLE POSITIVE SOLUTIONS TO A P-LAPLACIAN BOUNDARY-VALUE PROBLEM
    Kim, Chan-Gyun
    Shi, Junping
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [5] The p-Laplacian overdetermined problem on Riemannian manifolds
    Ruan, Qihua
    Huang, Qin
    Chen, Fan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (02) : 647 - 662
  • [6] The p-Laplacian overdetermined problem on Riemannian manifolds
    Qihua Ruan
    Qin Huang
    Fan Chen
    Annali di Matematica Pura ed Applicata (1923 -), 2024, 203 : 647 - 662
  • [7] Existence of Three Solutions for Singular p-Laplacian Equations with Boundary Value Problem
    Xia, Dafeng
    Tang, Yulian
    Hong, Zikang
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 85 - 88
  • [8] Existence of positive solutions for nonlinear singular boundary value problem with p-Laplacian
    Ji, Dehong
    Yang, Yitao
    Ge, Weigao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (02) : 188 - 197
  • [9] THE EXISTENCE OF MULTIPLE SOLUTIONS FOR BOUNDARY VALUE PROBLEM WITH ONE DIMENSIONAL P-LAPLACIAN
    Rudolf, Boris
    DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2012, 2013, 54 : 153 - 163
  • [10] EXISTENCE OF POSITIVE SOLUTIONS FOR A SECOND-ORDER p-LAPLACIAN IMPULSIVE BOUNDARY VALUE PROBLEM ON TIME SCALES
    Fen, F. Tokmak
    Karaca, I. Y.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (06) : 1889 - 1903