We consider a shallow water equation of Camassa-Holm type, containing nonlinear dispersive effects as well as fourth order dissipative effects. We prove the strong convergence and establish the condition under which, as diffusion and dispersion parameters tend to zero, smooth solutions of the shallow water equation converge to the entropy solution of a scalar conservation law using methodology developed by Hwang and Tzavaras [S. Hwang, A.E. Tzavaras, Kinetic decomposition of approximate solutions to conservation laws: Applications to relaxation and diffusion-dispersion approximations, Comm. Partial Differential Equations 27 (2002) 1229-1254]. The proof relies on the kinetic formulation of conservation laws and the averaging lemma. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Inst Matematica Pura & Aplicada, CNPq, BR-22460320 Rio De Janeiro, RJ, BrazilInst Matematica Pura & Aplicada, CNPq, BR-22460320 Rio De Janeiro, RJ, Brazil
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
Coclite, Giuseppe Maria
di Ruvo, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
机构:
Univ Vienna, Fac Math, A-1090 Vienna, Austria
Int Erwin Schrodinger Inst Math Phys, A-1090 Vienna, AustriaUniv Vienna, Fac Math, A-1090 Vienna, Austria