Layer thickness dependent strain rate sensitivity of Cu/amorphous CuNb multilayer

被引:31
|
作者
Fan, Z. [1 ]
Liu, Y. [2 ]
Xue, S. [1 ]
Rahimi, R. M. [3 ]
Bahr, D. F. [3 ]
Wang, H. [3 ,4 ]
Zhang, X. [3 ]
机构
[1] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA
[2] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[3] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
BULK METALLIC-GLASS; DEFORMATION MECHANISMS; COMPRESSIVE BEHAVIOR; MATRIX COMPOSITES; ULTRAFINE GRAIN; ELASTIC-MODULUS; SIZE; NANOCRYSTALLINE; NANOINDENTATION; INDENTATION;
D O I
10.1063/1.4980850
中图分类号
O59 [应用物理学];
学科分类号
摘要
Strain rate sensitivity of crystalline materials is closely related to dislocation activity. In the absence of dislocations, amorphous alloys are usually considered to be strain rate insensitive. However, the strain rate sensitivity of crystalline/amorphous composites is rarely studied, especially at nanoscale. In this study, we show that the strain rate sensitivity of Cu/amorphous CuNb multilayers is layer thickness dependent. At small layer thickness (below 50 nm), the multilayers demonstrate limited strain rate sensitivity; at relatively large layer thickness (above 100 nm), the strain rate sensitivity of multilayers is close to that of the single layer Cu film. Mechanisms that lead to size dependent variation of strain rate sensitivity in these multilayers are discussed. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Layer Thickness-Dependent Hardness and Strain Rate Sensitivity of Cu–Al/Al Nanostructured Multilayers
    Ya-Qiang Wang
    Zhao-Qi Hou
    Jin-Yu Zhang
    Xiao-Qing Liang
    Gang Liu
    Guo-Jun Zhang
    Jun Sun
    Acta Metallurgica Sinica(English Letters), 2016, 29 (02) : 156 - 162
  • [2] Layer Thickness-Dependent Hardness and Strain Rate Sensitivity of Cu–Al/Al Nanostructured Multilayers
    Ya-Qiang Wang
    Zhao-Qi Hou
    Jin-Yu Zhang
    Xiao-Qing Liang
    Gang Liu
    Guo-Jun Zhang
    Jun Sun
    Acta Metallurgica Sinica (English Letters), 2016, 29 : 156 - 162
  • [3] Layer Thickness-Dependent Hardness and Strain Rate Sensitivity of Cu-Al/Al Nanostructured Multilayers
    Wang, Ya-Qiang
    Hou, Zhao-Qi
    Zhang, Jin-Yu
    Liang, Xiao-Qing
    Liu, Gang
    Zhang, Guo-Jun
    Sun, Jun
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2016, 29 (02) : 156 - 162
  • [4] Unusual size dependent strengthening mechanisms of Cu/amorphous CuNb multilayers
    Fan, Z.
    Xue, S.
    Wang, J.
    Yu, K. Y.
    Wang, H.
    Zhang, X.
    ACTA MATERIALIA, 2016, 120 : 327 - 336
  • [5] Unusual strain rate sensitivity of nanoscale amorphous CuZr/crystalline Cu multilayers
    Xue, F.
    Huang, P.
    Liu, M. B.
    Xu, K. W.
    Wang, F.
    Lu, T. J.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 684 : 84 - 89
  • [6] Layer thickness dependent strengthening and strain delocalization mechanism in CuTa nanopillars with nanoscale amorphous/ amorphous interfaces
    Li, Jiejie
    Dai, Lehui
    Li, Jianjun
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 331
  • [7] Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique
    Song, Jian
    Liu, Yue
    Fan, Zhe
    Zhang, Xinghang
    CRYSTALS, 2018, 8 (03):
  • [8] Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires
    Fan Qian
    Xu Jian-Gang
    Song Hai-Yang
    Zhang Yun-Guang
    ACTA PHYSICA SINICA, 2015, 64 (01)
  • [9] Size- and constituent-dependent deformation mechanisms and strain rate sensitivity in nanolaminated crystalline Cu/amorphous Cu-Zr films
    Wang, Y. Q.
    Zhang, J. Y.
    Liang, X. Q.
    Wu, K.
    Liu, G.
    Sun, J.
    ACTA MATERIALIA, 2015, 95 : 132 - 144
  • [10] Size-dependent atomic strain localization mechanism in Nb/amorphous CuNb nanolayered composites
    Chen, Yangheng
    Wang, Yaodong
    Li, Jianjun
    JOURNAL OF APPLIED PHYSICS, 2024, 136 (20)